calculate-lim-n-0-n-e-nx-1-nx-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 55229 by maxmathsup by imad last updated on 19/Feb/19 calculatelimn→+∞∫0nenx1+nx2dx. Commented by maxmathsup by imad last updated on 25/Feb/19 letIn=∫0nenx1+nx2dxwehave1+nx2⩽n(1+x2)⇒11+nx2⩾1n(1+x2)⇒enx1+nx2⩾enxn(1+x2)⇒In⩾1n∫0nenx1+x2dxbutenx=∑p=0∞(nx)pp!⇒enx1+x2=∑p=0∞npxpp!(1+x2)⇒1n∫0nenx1+x2dx=1n∑p=0∞np∫0nxpp!(1+x2)dx=∫0ndx1+x2+∑p=1∞np−1∫0nxpp!(1+x2)dx⇒limn→+∞1n∫0nenx1+x2dx=+∞⇒limn→+∞In=+∞. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-186298Next Next post: calculate-lim-0-1-1-arctan-t-t-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.