Menu Close

calculate-lim-n-0-n-e-nx-1-nx-2-dx-




Question Number 55229 by maxmathsup by imad last updated on 19/Feb/19
calculate lim_(n→+∞)  ∫_0 ^n   (e^(nx) /(1+nx^2 )) dx  .
calculatelimn+0nenx1+nx2dx.
Commented by maxmathsup by imad last updated on 25/Feb/19
 let I_n =∫_0 ^n   (e^(nx) /(1+nx^2 )) dx  we have 1+nx^2 ≤n(1+x^2 ) ⇒(1/(1+nx^2 )) ≥(1/(n(1+x^2 ))) ⇒  (e^(nx) /(1+nx^2 )) ≥ (e^(nx) /(n(1+x^2 ))) ⇒ I_n  ≥(1/n) ∫_0 ^n   (e^(nx) /(1+x^2 ))dx  but  e^(nx)  =Σ_(p=0) ^∞  (((nx)^p )/(p!)) ⇒ (e^(nx) /(1+x^2 )) =Σ_(p=0) ^∞  ((n^p  x^p )/(p!(1+x^2 ))) ⇒(1/n)∫_0 ^n  (e^(nx) /(1+x^2 )) dx  =(1/n)Σ_(p=0) ^∞  n^p  ∫_0 ^n  (x^p /(p!(1+x^2 )))dx =∫_0 ^n  (dx/(1+x^2 )) +Σ_(p=1) ^∞  n^(p−1)  ∫_0 ^n  (x^p /(p!(1+x^2 )))dx ⇒  lim_(n→+∞)  (1/n) ∫_0 ^n  (e^(nx) /(1+x^2 ))dx =+∞ ⇒ lim_(n→+∞)  I_n = +∞ .
letIn=0nenx1+nx2dxwehave1+nx2n(1+x2)11+nx21n(1+x2)enx1+nx2enxn(1+x2)In1n0nenx1+x2dxbutenx=p=0(nx)pp!enx1+x2=p=0npxpp!(1+x2)1n0nenx1+x2dx=1np=0np0nxpp!(1+x2)dx=0ndx1+x2+p=1np10nxpp!(1+x2)dxlimn+1n0nenx1+x2dx=+limn+In=+.

Leave a Reply

Your email address will not be published. Required fields are marked *