Menu Close

calculate-lim-n-1-2-2-3-2-n-2-1-2-4-3-4-n-4-




Question Number 38642 by maxmathsup by imad last updated on 27/Jun/18
calculate lim_(n→+∞)   ((1 +2^2  +3^2  +....+n^2 )/(1+2^4  +3^4  +....+n^4 ))
$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}\:+\mathrm{2}^{\mathrm{2}} \:+\mathrm{3}^{\mathrm{2}} \:+….+{n}^{\mathrm{2}} }{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+….+{n}^{\mathrm{4}} } \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jun/18
pls post the source of the question...
$${pls}\:{post}\:{the}\:{source}\:{of}\:{the}\:{question}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jun/18
i am not solving the question but putting  simple logic  2^4 >2^2   3^4 >3^2   thus Σ_1 ^n r^4  >Σ_1 ^n r^2   so D_r >>N_r   when  n→∞  i think  limit value →0  so pls comment whether i am right or wrong  also solve atleast one question to KNOW  THE UNKNOWN...
$${i}\:{am}\:{not}\:{solving}\:{the}\:{question}\:{but}\:{putting} \\ $$$${simple}\:{logic} \\ $$$$\mathrm{2}^{\mathrm{4}} >\mathrm{2}^{\mathrm{2}} \\ $$$$\mathrm{3}^{\mathrm{4}} >\mathrm{3}^{\mathrm{2}} \\ $$$${thus}\:\underset{\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{4}} \:>\underset{\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{2}} \\ $$$${so}\:{D}_{{r}} >>{N}_{{r}} \\ $$$${when}\:\:{n}\rightarrow\infty\:\:{i}\:{think}\:\:{limit}\:{value}\:\rightarrow\mathrm{0} \\ $$$${so}\:{pls}\:{comment}\:{whether}\:{i}\:{am}\:{right}\:{or}\:{wrong} \\ $$$${also}\:{solve}\:{atleast}\:{one}\:{question}\:{to}\:{KNOW} \\ $$$${THE}\:{UNKNOWN}… \\ $$
Commented by abdo mathsup 649 cc last updated on 28/Jun/18
the Q is find  Σ_(n=1) ^∞    ((1+2^2  +3^2 +...+n^2 )/(1+2^4  +3^4  +...+n^4 ))
$${the}\:{Q}\:{is}\:{find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}+\mathrm{2}^{\mathrm{2}} \:+\mathrm{3}^{\mathrm{2}} +…+{n}^{\mathrm{2}} }{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+…+{n}^{\mathrm{4}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *