Menu Close

calculate-lim-n-1-2-3-3-3-n-3-1-2-4-3-4-n-4-




Question Number 38641 by maxmathsup by imad last updated on 27/Jun/18
calculate lim_(nā†’+āˆž)    ((1+2^3  +3^3  +....+n^3 )/(1+2^4  +3^4  +...+n^4 )) .
$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\frac{\mathrm{1}+\mathrm{2}^{\mathrm{3}} \:+\mathrm{3}^{\mathrm{3}} \:+….+{n}^{\mathrm{3}} }{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+…+{n}^{\mathrm{4}} }\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 28/Jun/18
the Q is find  Ī£_(n=1) ^āˆž   ((1+2^3  +3^3  +...+n^3 )/(1+2^4  +3^(4 )  +...+n^4 ))
$${the}\:{Q}\:{is}\:{find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}+\mathrm{2}^{\mathrm{3}} \:+\mathrm{3}^{\mathrm{3}} \:+…+{n}^{\mathrm{3}} }{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}\:} \:+…+{n}^{\mathrm{4}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *