Menu Close

calculate-lim-n-1-2-3-n-1-2-4-3-4-n-4-




Question Number 38643 by maxmathsup by imad last updated on 27/Jun/18
calculate lim_(n→+∞)    ((1+2+3+...+n)/(1+2^4  +3^4  +...+n^4 ))
calculatelimn+1+2+3++n1+24+34++n4
Commented by abdo mathsup 649 cc last updated on 28/Jun/18
the Q is find Σ_(n=1) ^∞   ((1+2+3+...+n)/(1+2^(4 )  +3^4 +...+n^4 ))
theQisfindn=11+2+3++n1+24+34++n4
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jun/18
pls post the source of the question and validity
plspostthesourceofthequestionandvalidity
Answered by ajfour last updated on 28/Jun/18
Σ_(r=1) ^n r^4  = Σ_(r=1) ^n r(r+1)(r+2)(r+3)               −6Σ_(r=1) ^n r^3 −11Σ_(r=1) ^n r^2 −6Σ_(r=1) ^n r             =((n(n+1)(n+2)(n+3)(n+4))/5)         −((6n^2 (n+1)^2 )/4)−((11n(n+1)(2n+1))/6)          −((6n(n+1))/2)       = ((n(n+1))/(30)){6(n+2)(n+3)(n+4)      −45n(n+1)−55(2n+1)−90}     =((n(n+1))/(30)){6n^3 +9n^2 +6n−1}  So lim_(n→∞) (((Σ_(r=1) ^n r)^(5/2) )/(Σ_(r=1) ^n r^4 )) = lim_(n→∞)  (([((n(n+1))/2)]^(5/2) )/([((n(n+1))/(30))(6n^3 +9n^2 +6n−1)]))                     =((((1/2))^(5/2) )/(((1/(30)))×6)) = (5/(4(√2))) .
nr=1r4=nr=1r(r+1)(r+2)(r+3)6nr=1r311nr=1r26nr=1r=n(n+1)(n+2)(n+3)(n+4)56n2(n+1)2411n(n+1)(2n+1)66n(n+1)2=n(n+1)30{6(n+2)(n+3)(n+4)45n(n+1)55(2n+1)90}=n(n+1)30{6n3+9n2+6n1}Solimn(nr=1r)5/2nr=1r4=limn[n(n+1)2]5/2[n(n+1)30(6n3+9n2+6n1)]=(12)5/2(130)×6=542.
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jun/18
why (Σ_(r=1) ^n r)^(5/2)
why(nr=1r)52
Commented by ajfour last updated on 28/Jun/18
I did not like the obvious answer  to the original question, so i  changed the question !(⌣^(°^�        °^�  ) )!
Ididnotliketheobviousanswertotheoriginalquestion,soichangedthequestion!(°^°^)!

Leave a Reply

Your email address will not be published. Required fields are marked *