Menu Close

calculate-lim-n-1-2i-1-it-n-n-1-it-n-n-




Question Number 36924 by maxmathsup by imad last updated on 07/Jun/18
calculate  lim_(n→+∞)   (1/(2i)){ (1+((it)/n))^n  −(1−((it)/n))^n )
calculatelimn+12i{(1+itn)n(1itn)n)
Commented by math khazana by abdo last updated on 09/Jun/18
we haveA_n (t)=(1/(2i)) (1+((it)/n))^n  −(1−((it)/n))^n   = Im{(1+((it)/n))}^n   but ∣ 1+((it)/n)∣=(√(1+(t^2 /n^2 )))  =((√(t^2  +n^2 ))/n) ⇒ 1+((it)/n) =((√(t^2  +n^2 ))/n){  (n/( (√(t^2  +n^2 )))) + i(t/( (√(t^2  +n^2 ))))}  =r e^(iθ)  ⇒ r=((√(t^2  +n^2 ))/n) and  cosθ = (n/( (√(t^2  +n^2 ))))  sinθ = (t/( (√(t^2  +n^2 )))) ⇒ tan(θ) = (t/n) ⇒θ =artan((t/n))  ⇒ (1+((it)/n))=r e^(i arctan((t/n)))  ⇒ A_n (t)=r^n  e^(in arctan((t/n)))   r=(√(1+(t^2 /n^2 )))  ∼ 1 + (t^2 /(2n^2 )) ⇒r^n   ∼(1+(t^2 /(2n^2 )))^n   ∼ 1+ (t^2 /(2n)) →1(n→+∞)  arctan((t/n)) ∼ (t/n) (n→+∞) and natctan((t/n))∼t  so  lim_(n→+∞)  A_n (t)= e^(it)  =cost +isint .
wehaveAn(t)=12i(1+itn)n(1itn)n=Im{(1+itn)}nbut1+itn∣=1+t2n2=t2+n2n1+itn=t2+n2n{nt2+n2+itt2+n2}=reiθr=t2+n2nandcosθ=nt2+n2sinθ=tt2+n2tan(θ)=tnθ=artan(tn)(1+itn)=reiarctan(tn)An(t)=rneinarctan(tn)r=1+t2n21+t22n2rn(1+t22n2)n1+t22n1(n+)arctan(tn)tn(n+)andnatctan(tn)tsolimn+An(t)=eit=cost+isint.

Leave a Reply

Your email address will not be published. Required fields are marked *