Menu Close

calculate-lim-n-1-i-lt-j-n-1-i-x-j-x-with-x-gt-1-for-that-consider-x-n-1-1-n-x-2-calculate-lim-n-1-i-lt-j-n-1-ij-2-




Question Number 42493 by maxmathsup by imad last updated on 26/Aug/18
 calculate lim_(n→+∞)    Σ_(1≤i<j≤n)      (1/(i^x j^x ))   with  x>1  for that consider  ξ(x) =Σ_(n=1) ^∞   (1/n^x )  2) calculate lim_(n→+∞)  Σ_(1≤i<j≤n)       (1/((ij)^2 )) .
calculatelimn+1i<jn1ixjxwithx>1forthatconsiderξ(x)=n=11nx2)calculatelimn+1i<jn1(ij)2.
Commented by maxmathsup by imad last updated on 29/Aug/18
let  S_n (x)= Σ_(1≤i<j≤n)      (1/(i^x  j^x ))     and ξ_n (x)=Σ_(k=1) ^n  (1/k^x )   we have   ( Σ_(k=1) ^n    (1/k^x ))^2   =Σ_(k=1) ^n    (1/k^(2x) ) +2 Σ_(1≤i<j≤n)       (1/(i^x  j^x ))   let passe to limit(n→+∞)  we get  (ξ(x))^2    = ξ(2x) + 2 lim_(n→+∞)  S_n (x) ⇒  lim_(n→+∞)    S_n (x)  = (1/2){  (ξ(x))^2  −ξ(2x)}  2) we have lim_(n→+∞)   Σ_(1≤i<j≤n)   (1/(i^2 j^2 )) =lim_(n→+∞)  S_n (2)  =(1/2) { (ξ(2))^2  −ξ(4)} =(1/2){  ((π^2 /6))^2  −ξ(4)}  =(1/2){ (π^4 /(36)) −ξ(4)} .
letSn(x)=1i<jn1ixjxandξn(x)=k=1n1kxwehave(k=1n1kx)2=k=1n1k2x+21i<jn1ixjxletpassetolimit(n+)weget(ξ(x))2=ξ(2x)+2limn+Sn(x)limn+Sn(x)=12{(ξ(x))2ξ(2x)}2)wehavelimn+1i<jn1i2j2=limn+Sn(2)=12{(ξ(2))2ξ(4)}=12{(π26)2ξ(4)}=12{π436ξ(4)}.

Leave a Reply

Your email address will not be published. Required fields are marked *