Menu Close

calculate-lim-n-a-n-0-1-x-2n-sin-pix-2-dx-with-a-n-k-1-n-sin-pik-2n-




Question Number 111771 by mathmax by abdo last updated on 04/Sep/20
calculate lim_(n→+∞) a_n ∫_0 ^1  x^(2n) sin(((πx)/2))dx with a_n =Σ_(k=1) ^n  sin(((πk)/(2n)))
$$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{a}_{\mathrm{n}} \int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{2n}} \mathrm{sin}\left(\frac{\pi\mathrm{x}}{\mathrm{2}}\right)\mathrm{dx}\:\mathrm{with}\:\mathrm{a}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{sin}\left(\frac{\pi\mathrm{k}}{\mathrm{2n}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *