Menu Close

Calculate-lim-n-A-n-0-1-x-n-1-x-dx-




Question Number 172307 by mathocean1 last updated on 25/Jun/22
Calculate   lim_(n→+∞) A_n =∫_0 ^1 (x^n /(1+x))dx
CalculateDouble subscripts: use braces to clarify
Answered by aleks041103 last updated on 25/Jun/22
A_n =∫_0 ^1 (x^n /(1−(−x)))dx=(−1)^n ∫_0 ^1 (((−x)^n −1+1)/(1−(−x)))dx=  =(−1)^(n+1) ∫_0 ^1 ((1−(−x)^n −1)/(1−(−x)))dx=  =(−1)^(n+1) [∫_0 ^1 ((1−(−x)^n )/(1−(−x)))dx−∫_0 ^1 (dx/(1+x))]=  =(−1)^(n+1) [∫_0 ^1 (Σ_(k=1) ^n (−x)^(k−1) )dx−ln(1+1)+ln(1+0)]=  =(−1)^(n+1) [Σ_(k=1) ^n (−1)^(k−1) (∫_0 ^1 x^(k−1) dx)−ln(2)]=  =(−1)^(n+1) [Σ_(k=1) ^n (((−1)^(k−1) )/k)−ln(2)]  (1/(1+x))=Σ_(k=0) ^∞ (−x)^k   ⇒∫_0 ^s (dx/(1+x))=ln(1+s)=Σ_(k=0) ^∞ (−1)^k (s^(k+1) /(k+1))=  ⇒ln(1+s)=Σ_(k=1) ^∞ (((−1)^(k−1) s^k )/k)  ⇒Σ_(k=1) ^n (((−1)^(k−1) )/k)=ln(2)−Σ_(k=n+1) ^∞ (((−1)^(k−1) )/k)  ⇒A_n =(−1)^n Σ_(k=n+1) ^∞ (((−1)^(k−1) )/k)  ⇒lim_(n→∞) A_n =0
An=01xn1(x)dx=(1)n01(x)n1+11(x)dx==(1)n+1011(x)n11(x)dx==(1)n+1[011(x)n1(x)dx01dx1+x]==(1)n+1[01(nk=1(x)k1)dxln(1+1)+ln(1+0)]==(1)n+1[nk=1(1)k1(01xk1dx)ln(2)]==(1)n+1[nk=1(1)k1kln(2)]11+x=k=0(x)k0sdx1+x=ln(1+s)=k=0(1)ksk+1k+1=ln(1+s)=k=1(1)k1skknk=1(1)k1k=ln(2)k=n+1(1)k1kAn=(1)nk=n+1(1)k1kDouble subscripts: use braces to clarify
Answered by Mathspace last updated on 25/Jun/22
A_n =∫_R^+     (x^n /(1+x))χ_([0,1])  (x)dx  =∫_R^+    f_n (x)dx  f_m converge simplement vers0  car x ∈[0,1]  and f_n est dominee par  g(x)=(1/(1+x)) ⇒lim A_n =∫_R^+   lim f_n =0
An=R+xn1+xχ[0,1](x)dx=R+fn(x)dxfmconvergesimplementvers0carx[0,1]andfnestdomineeparg(x)=11+xlimAn=R+limfn=0
Answered by puissant last updated on 25/Jun/22
 0≤x≤1         ⇒       1≤1+x≤2   on a :  (x^n /2)≤ (x^n /(1+x))≤x^n   ⇒ (1/2)∫_0 ^1 x^n dx ≤ I_n ≤∫_0 ^1 x^n dx  ⇒ (1/(2(n+1))) ≤ I_n ≤ (1/(n+1))  donc lim_(n→+∞) I_n =0   d′apres le theoreme des gendarmes..
0x111+x2ona:xn2xn1+xxn1201xndxIn01xndx12(n+1)In1n+1donclimn+In=0dapresletheoremedesgendarmes..

Leave a Reply

Your email address will not be published. Required fields are marked *