Calculate-lim-n-A-n-0-1-x-n-1-x-dx- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 172307 by mathocean1 last updated on 25/Jun/22 CalculateDouble subscripts: use braces to clarifyDouble subscripts: use braces to clarifyDouble subscripts: use braces to clarify Answered by aleks041103 last updated on 25/Jun/22 An=∫01xn1−(−x)dx=(−1)n∫01(−x)n−1+11−(−x)dx==(−1)n+1∫011−(−x)n−11−(−x)dx==(−1)n+1[∫011−(−x)n1−(−x)dx−∫01dx1+x]==(−1)n+1[∫01(∑nk=1(−x)k−1)dx−ln(1+1)+ln(1+0)]==(−1)n+1[∑nk=1(−1)k−1(∫01xk−1dx)−ln(2)]==(−1)n+1[∑nk=1(−1)k−1k−ln(2)]11+x=∑∞k=0(−x)k⇒∫0sdx1+x=ln(1+s)=∑∞k=0(−1)ksk+1k+1=⇒ln(1+s)=∑∞k=1(−1)k−1skk⇒∑nk=1(−1)k−1k=ln(2)−∑∞k=n+1(−1)k−1k⇒An=(−1)n∑∞k=n+1(−1)k−1kDouble subscripts: use braces to clarifyDouble subscripts: use braces to clarifyDouble subscripts: use braces to clarify Answered by Mathspace last updated on 25/Jun/22 An=∫R+xn1+xχ[0,1](x)dx=∫R+fn(x)dxfmconvergesimplementvers0carx∈[0,1]andfnestdomineeparg(x)=11+x⇒limAn=∫R+limfn=0 Answered by puissant last updated on 25/Jun/22 0⩽x⩽1⇒1⩽1+x⩽2ona:xn2⩽xn1+x⩽xn⇒12∫01xndx⩽In⩽∫01xndx⇒12(n+1)⩽In⩽1n+1donclimn→+∞In=0d′apresletheoremedesgendarmes.. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: show-that-J-0-ln-t-t-2-a-2-dt-with-a-gt-0-is-convergent-Next Next post: bemath-lim-x-pi-4-x-pi-cos-2-x-pi-pi-2x-cos-x-pi-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.