Menu Close

calculate-lim-n-k-0-2n-1-n-n-2-k-




Question Number 62877 by mathmax by abdo last updated on 26/Jun/19
calculate lim_(n→+∞)  Σ_(k=0) ^(2n+1)  (n/(n^2  +k))
$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}+\mathrm{1}} \:\frac{{n}}{{n}^{\mathrm{2}} \:+{k}} \\ $$
Commented by mathmax by abdo last updated on 27/Jun/19
we have  0≤k≤2n+1 ⇒n^2  ≤n^2  +k ≤(n+1)^2  ⇒(1/((n+1)^2 )) ≤(1/(n^2  +k)) ≤(1/n^2 ) ⇒  (n/((n+1)^2 )) ≤(n/(n^2  +k)) ≤(1/n) ⇒Σ_(k=0) ^(2n+1)  (n/((n+1)^2 )) ≤ Σ_(n=0) ^(2n+1)  (n/(n^2  +k)) ≤Σ_(k=0) ^(2n+1)  (1/n) ⇒  ((n(2n+2))/(n^2  +2n+1)) ≤ S_n ≤ ((2n+2)/n)   but lim_(n→+∞)  ((2n^2  +2n)/(n^2  +2n+2)) =2  and lim_(n→+∞)  ((2n+2)/n) =2 ⇒lim_(n→+∞)  S_n =2 .
$${we}\:{have}\:\:\mathrm{0}\leqslant{k}\leqslant\mathrm{2}{n}+\mathrm{1}\:\Rightarrow{n}^{\mathrm{2}} \:\leqslant{n}^{\mathrm{2}} \:+{k}\:\leqslant\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:\Rightarrow\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{k}}\:\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\frac{{n}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\leqslant\frac{{n}}{{n}^{\mathrm{2}} \:+{k}}\:\leqslant\frac{\mathrm{1}}{{n}}\:\Rightarrow\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}+\mathrm{1}} \:\frac{{n}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\leqslant\:\sum_{{n}=\mathrm{0}} ^{\mathrm{2}{n}+\mathrm{1}} \:\frac{{n}}{{n}^{\mathrm{2}} \:+{k}}\:\leqslant\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}+\mathrm{1}} \:\frac{\mathrm{1}}{{n}}\:\Rightarrow \\ $$$$\frac{{n}\left(\mathrm{2}{n}+\mathrm{2}\right)}{{n}^{\mathrm{2}} \:+\mathrm{2}{n}+\mathrm{1}}\:\leqslant\:{S}_{{n}} \leqslant\:\frac{\mathrm{2}{n}+\mathrm{2}}{{n}}\:\:\:{but}\:{lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{2}{n}^{\mathrm{2}} \:+\mathrm{2}{n}}{{n}^{\mathrm{2}} \:+\mathrm{2}{n}+\mathrm{2}}\:=\mathrm{2} \\ $$$${and}\:{lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{2}{n}+\mathrm{2}}{{n}}\:=\mathrm{2}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\mathrm{2}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *