Menu Close

calculate-lim-n-k-1-2n-k-k-2-n-2-




Question Number 111754 by mathmax by abdo last updated on 04/Sep/20
  calculate lim_(n→+∞)  Σ_(k=1) ^(2n)     (k/(k^2  +n^2 ))
calculatelimn+k=12nkk2+n2
Answered by Dwaipayan Shikari last updated on 04/Sep/20
lim_(n→∞) (1/n)Σ^(2n) (k/((k^2 /n)+n))=lim_(n→∞) (1/n)Σ_(k=1) ^(2n) (1/((k/n)+(n/k)))=∫_0 ^2 (1/(x+(1/x)))dx  =(1/2)∫_0 ^2 ((2x)/(x^2 +1))dx  =[(1/2)log(x^2 +1)]_0 ^2   =(1/2)log(5)
limn1n2nkk2n+n=limn1n2nk=11kn+nk=021x+1xdx=12022xx2+1dx=[12log(x2+1)]02=12log(5)
Answered by mathmax by abdo last updated on 07/Sep/20
A_n =Σ_(k=1) ^n  (k/(k^2  +n^2 )) +Σ_(k=n+1) ^(2n)  (k/(k^2  +n^2 )) =S_1 ^n  + S_2 ^n   S_1 ^n  =Σ_(k=1) ^n  (k/(k^2 (1+(n^2 /k^2 )))) =(1/n)Σ_(k=1) ^n  (n/(k(1+(1/(n^2 /k^2 ))))) →∫_0 ^1  (x/(1+(1/x)))dx  =∫_0 ^1  (x^2 /(x+1))dx =∫_0 ^1  ((x^2 −1+1)/(x+1)) dx =∫_0 ^1 (x−1)dx +∫_0 ^1  (dx/(x+1))  =[(x^2 /2)−x]_0 ^1  +[ln(x+1)]_0 ^1  =−(1/2) +ln(2)  S_2 ^n  =Σ_(k=n+1) ^(2n)  (k/(k^2  +n^2 )) =_(k−n=p)   Σ_(p=1) ^n  ((n+p)/((n+p)^2  +n^2 ))  =Σ_(p=1) ^n  ((n+p)/(n^2 +2np +p^2  +n^2 )) =Σ_(p=1) ^n  ((n+p)/(2n^2  +2np +p^2 ))  =Σ_(p=1) ^n  ((n(1+(p/n)))/(n^2 (2 +((2p)/n)+(p^2 /n^2 )))) =(1/n) Σ_(p=1) ^n  ((1+(p/n))/(((p/n))^2  +2((p/n))+2))→∫_0 ^(1 )  ((1+x)/(x^2  +2x +2))dx  =(1/2) ∫_0 ^1 ((2x+2)/(x^2  +2x+2)) dx =(1/2)[ln(x^2  +2x+2)]_0 ^1  =(1/2)(ln(5)−ln(2)) ⇒  lim_(n→+∞)  A_n =ln(2)−(1/2) +(1/2)ln5 −(1/2)ln2 =(1/2)ln2+(1/2)ln5−(1/2)  =ln((√(10)))−(1/2)
An=k=1nkk2+n2+k=n+12nkk2+n2=S1n+S2nS1n=k=1nkk2(1+n2k2)=1nk=1nnk(1+1n2k2)01x1+1xdx=01x2x+1dx=01x21+1x+1dx=01(x1)dx+01dxx+1=[x22x]01+[ln(x+1)]01=12+ln(2)S2n=k=n+12nkk2+n2=kn=pp=1nn+p(n+p)2+n2=p=1nn+pn2+2np+p2+n2=p=1nn+p2n2+2np+p2=p=1nn(1+pn)n2(2+2pn+p2n2)=1np=1n1+pn(pn)2+2(pn)+2011+xx2+2x+2dx=12012x+2x2+2x+2dx=12[ln(x2+2x+2)]01=12(ln(5)ln(2))limn+An=ln(2)12+12ln512ln2=12ln2+12ln512=ln(10)12

Leave a Reply

Your email address will not be published. Required fields are marked *