Menu Close

calculate-lim-n-k-1-n-kn-k-2-n-2-




Question Number 99237 by abdomathmax last updated on 19/Jun/20
calculate lim_(n→+∞)      Σ_(k=1) ^n   ((√(kn))/((k^2  +n^2 )))
calculatelimn+k=1nkn(k2+n2)
Answered by Ar Brandon last updated on 19/Jun/20
l=lim_(n→∞) Σ_(k=1) ^n ((√(kn))/((k^2 +n^2 )))=lim_(n→∞) Σ_(k=1) ^n ((√((kn^2 )/n))/((k^2 +n^2 )))=lim_(n→∞) (n/n^2 )Σ_(n→∞) ^n ((√(k/n))/([(k^2 /n^2 )+1]))    =∫_1 ^2 ((√x)/(x^2 +1))dx  , t^2 =x⇒2tdt=dx  ⇒l=∫_1 ^(√2) ((2t^2 )/(t^4 +1))dt=∫_1 ^(√2) (((t^2 +1)+(t^2 −1))/(t^4 +1))dt=∫_1 ^(√2) ((t^2 +1)/(t^4 +1))dt+∫_1 ^(√2) ((t^2 −1)/(t^4 +1))dt        =∫_1 ^(√2) ((1+(1/t^2 ))/(t^2 +(1/t^2 )))dt+∫_1 ^(√2) ((1−(1/t^2 ))/(t^2 +(1/t^2 )))dt=∫_1 ^(√2) ((1+(1/t^2 ))/((t−(1/t))^2 +2))dt+∫_1 ^(√2) ((1−(1/t^2 ))/((t+(1/t))^2 −2))dt  u=t−(1/t)⇒du=(1+(1/t^2 ))dt,  v=t+(1/t)⇒dv=(1−(1/t^2 ))dt  ⇒l=∫_0 ^(1/( (√2))) (du/(u^2 +2))+∫_2 ^(3/( (√2))) (dv/(v^2 −2))=[(1/( (√2)))tan^(−1) ((u/( (√2))))]_0 ^(1/( (√2))) −[(1/( (√2)))tanh^(−1) ((v/( (√2))))]_2 ^(3/( (√2)))   ⇒l=(1/( (√2)))[tan^(−1) ((1/2))]−(1/( (√2)))[tanh^(−1) ((3/2))−tanh^(−1) ((√2))]  undefined { (),() :}f(x)=tanh^(−1) x⇒x∈]−1,1[
l=limnnk=1kn(k2+n2)=limnnk=1kn2n(k2+n2)=limnnn2nnkn[k2n2+1]=12xx2+1dx,t2=x2tdt=dxl=122t2t4+1dt=12(t2+1)+(t21)t4+1dt=12t2+1t4+1dt+12t21t4+1dt=121+1t2t2+1t2dt+1211t2t2+1t2dt=121+1t2(t1t)2+2dt+1211t2(t+1t)22dtu=t1tdu=(1+1t2)dt,v=t+1tdv=(11t2)dtl=012duu2+2+232dvv22=[12tan1(u2)]012[12tanh1(v2)]232l=12[tan1(12)]12[tanh1(32)tanh1(2)]undefined{f(x)=tanh1xx]1,1[
Commented by abdomathmax last updated on 19/Jun/20
thanks sir.
thankssir.
Commented by mathmax by abdo last updated on 21/Jun/20
oo yes you are right ...
ooyesyouareright
Commented by mathmax by abdo last updated on 21/Jun/20
t+(1/t) =v ⇒ ∫_0 ^1  ((1−(1/t^2 ))/((t+(1/t))^2 −2))dt =−∫_2 ^∞  (dv/(v^2 −2)) =−(1/(2(√2)))∫_2 ^∞  ((1/(v−(√2)))−(1/(v+(√2))))dv  =−(1/(2(√2)))[ln∣((v−(√2))/(v+(√2)))∣]_2 ^∞  =(1/(2(√2)))ln(((2−(√2))/(2+(√2)))) ⇒  I =(π/(2(√2))) +(1/(2(√2)))ln(((2−(√2))/(2+(√2))))
t+1t=v0111t2(t+1t)22dt=2dvv22=1222(1v21v+2)dv=122[lnv2v+2]2=122ln(222+2)I=π22+122ln(222+2)
Commented by mathmax by abdo last updated on 20/Jun/20
s =lim_(n→+∞)     (1/n)Σ_(k=1) ^n   ((√(k/n))/(1+((k/n))^2 )) =∫_0 ^(1 )  ((√x)/(1+x^2 )) dx  =_((√x)=t)   ∫_0 ^(1 )   (t/(1+t^4 ))(2t)dt =2 ∫_0 ^1  (t^2 /(1+t^4 ))dt  but  ∫_0 ^1  (t^2 /(1+t^4 )) =∫_0 ^1  (1/((1/t^2 )+t^2 )) dt =(1/2)∫_0 ^1  ((1+(1/t^2 )+1−(1/t^2 ))/(t^2  +(1/t^2 ))) dt  =(1/2) ∫_0 ^1  ((1+(1/t^2 ))/((t−(1/t))^2  +2))dt(t−(1/t)=−u) +(1/2)∫_0 ^1  ((1−(1/t^2 ))/((t+(1/t))^2 −2))(t+(1/t)=−v)  =−(1/2)∫_0 ^∞   ((−du)/(u^2  +2))  −(1/2)∫_0 ^∞   ((−dv)/(v^2 −2)) =(1/2) ∫_0 ^∞  (du/(u^2  +2)) +(1/2)∫_0 ^∞  (dv/(v^2 −2)) we hsve  ∫_0 ^∞  (du/(u^2  +2)) =_(u=(√2)α)   ∫_0 ^∞  (((√2)dα)/(2(1+α^2 ))) =(1/( (√2)))×(π/2) =(π/(2(√2)))  ∫_0 ^∞   (dv/(v^2 −2)) =(1/4)∫_0 ^∞ ((1/(v−2))−(1/(v+2)))dv =(1/4)[ln∣((v−2)/(v+2))∣]_0 ^∞  =(1/4)×0=0 ⇒  s =(π/( (√2)))
s=limn+1nk=1nkn1+(kn)2=01x1+x2dx=x=t01t1+t4(2t)dt=201t21+t4dtbut01t21+t4=0111t2+t2dt=12011+1t2+11t2t2+1t2dt=12011+1t2(t1t)2+2dt(t1t=u)+120111t2(t+1t)22(t+1t=v)=120duu2+2120dvv22=120duu2+2+120dvv22wehsve0duu2+2=u=2α02dα2(1+α2)=12×π2=π220dvv22=140(1v21v+2)dv=14[lnv2v+2]0=14×0=0s=π2
Commented by Ar Brandon last updated on 21/Jun/20
How did you obtain your limits for v?  I thought it was supposed to range from 2 to −∞
Howdidyouobtainyourlimitsforv?Ithoughtitwassupposedtorangefrom2to

Leave a Reply

Your email address will not be published. Required fields are marked *