Question Number 99237 by abdomathmax last updated on 19/Jun/20

Answered by Ar Brandon last updated on 19/Jun/20
![l=lim_(n→∞) Σ_(k=1) ^n ((√(kn))/((k^2 +n^2 )))=lim_(n→∞) Σ_(k=1) ^n ((√((kn^2 )/n))/((k^2 +n^2 )))=lim_(n→∞) (n/n^2 )Σ_(n→∞) ^n ((√(k/n))/([(k^2 /n^2 )+1])) =∫_1 ^2 ((√x)/(x^2 +1))dx , t^2 =x⇒2tdt=dx ⇒l=∫_1 ^(√2) ((2t^2 )/(t^4 +1))dt=∫_1 ^(√2) (((t^2 +1)+(t^2 −1))/(t^4 +1))dt=∫_1 ^(√2) ((t^2 +1)/(t^4 +1))dt+∫_1 ^(√2) ((t^2 −1)/(t^4 +1))dt =∫_1 ^(√2) ((1+(1/t^2 ))/(t^2 +(1/t^2 )))dt+∫_1 ^(√2) ((1−(1/t^2 ))/(t^2 +(1/t^2 )))dt=∫_1 ^(√2) ((1+(1/t^2 ))/((t−(1/t))^2 +2))dt+∫_1 ^(√2) ((1−(1/t^2 ))/((t+(1/t))^2 −2))dt u=t−(1/t)⇒du=(1+(1/t^2 ))dt, v=t+(1/t)⇒dv=(1−(1/t^2 ))dt ⇒l=∫_0 ^(1/( (√2))) (du/(u^2 +2))+∫_2 ^(3/( (√2))) (dv/(v^2 −2))=[(1/( (√2)))tan^(−1) ((u/( (√2))))]_0 ^(1/( (√2))) −[(1/( (√2)))tanh^(−1) ((v/( (√2))))]_2 ^(3/( (√2))) ⇒l=(1/( (√2)))[tan^(−1) ((1/2))]−(1/( (√2)))[tanh^(−1) ((3/2))−tanh^(−1) ((√2))] undefined { (),() :}f(x)=tanh^(−1) x⇒x∈]−1,1[](https://www.tinkutara.com/question/Q99252.png)
Commented by abdomathmax last updated on 19/Jun/20

Commented by mathmax by abdo last updated on 21/Jun/20

Commented by mathmax by abdo last updated on 21/Jun/20
![t+(1/t) =v ⇒ ∫_0 ^1 ((1−(1/t^2 ))/((t+(1/t))^2 −2))dt =−∫_2 ^∞ (dv/(v^2 −2)) =−(1/(2(√2)))∫_2 ^∞ ((1/(v−(√2)))−(1/(v+(√2))))dv =−(1/(2(√2)))[ln∣((v−(√2))/(v+(√2)))∣]_2 ^∞ =(1/(2(√2)))ln(((2−(√2))/(2+(√2)))) ⇒ I =(π/(2(√2))) +(1/(2(√2)))ln(((2−(√2))/(2+(√2))))](https://www.tinkutara.com/question/Q99469.png)
Commented by mathmax by abdo last updated on 20/Jun/20
![s =lim_(n→+∞) (1/n)Σ_(k=1) ^n ((√(k/n))/(1+((k/n))^2 )) =∫_0 ^(1 ) ((√x)/(1+x^2 )) dx =_((√x)=t) ∫_0 ^(1 ) (t/(1+t^4 ))(2t)dt =2 ∫_0 ^1 (t^2 /(1+t^4 ))dt but ∫_0 ^1 (t^2 /(1+t^4 )) =∫_0 ^1 (1/((1/t^2 )+t^2 )) dt =(1/2)∫_0 ^1 ((1+(1/t^2 )+1−(1/t^2 ))/(t^2 +(1/t^2 ))) dt =(1/2) ∫_0 ^1 ((1+(1/t^2 ))/((t−(1/t))^2 +2))dt(t−(1/t)=−u) +(1/2)∫_0 ^1 ((1−(1/t^2 ))/((t+(1/t))^2 −2))(t+(1/t)=−v) =−(1/2)∫_0 ^∞ ((−du)/(u^2 +2)) −(1/2)∫_0 ^∞ ((−dv)/(v^2 −2)) =(1/2) ∫_0 ^∞ (du/(u^2 +2)) +(1/2)∫_0 ^∞ (dv/(v^2 −2)) we hsve ∫_0 ^∞ (du/(u^2 +2)) =_(u=(√2)α) ∫_0 ^∞ (((√2)dα)/(2(1+α^2 ))) =(1/( (√2)))×(π/2) =(π/(2(√2))) ∫_0 ^∞ (dv/(v^2 −2)) =(1/4)∫_0 ^∞ ((1/(v−2))−(1/(v+2)))dv =(1/4)[ln∣((v−2)/(v+2))∣]_0 ^∞ =(1/4)×0=0 ⇒ s =(π/( (√2)))](https://www.tinkutara.com/question/Q99386.png)
Commented by Ar Brandon last updated on 21/Jun/20
