Menu Close

calculate-lim-n-k-1-n-ln-n-n-k-1-n-




Question Number 111766 by mathmax by abdo last updated on 04/Sep/20
calculate lim_(n→+∞)  Σ_(k=1) ^n ln((n/(n+k)))^(1/n)
calculatelimn+k=1nln(nn+k)1n
Answered by Dwaipayan Shikari last updated on 04/Sep/20
lim_(n→∞) (1/n)Σ^n log((1/(1+(k/n))))=∫_0 ^1 log((1/(1+x)))=−[xlog(1+x)]_0 ^1 +∫_0 ^1 (x/(1+x))  =−log(2)+1−[log(1+x)]_0 ^1 =1−2log(2)
limn1nnlog(11+kn)=01log(11+x)=[xlog(1+x)]01+01x1+x=log(2)+1[log(1+x)]01=12log(2)
Answered by mathmax by abdo last updated on 07/Sep/20
A_n =(1/n)Σ_(k=1) ^n  ln((n/(n+k))) =(1/n) Σ_(k=1) ^n  ln((1/(1+(k/n)))) ⇒A_n is  a Rieman sum  lim_(n→+∞) A_n =∫_0 ^1  ln((1/(1+x)))dx =−∫_0 ^1  ln(1+x)dx =_(1+x=t)   =−∫_1 ^2  ln(t)dt =−[tlnt−t]_1 ^2  =−{2ln2−2+1} =−{2ln2−1}  =1−2ln(2)
An=1nk=1nln(nn+k)=1nk=1nln(11+kn)AnisaRiemansumlimn+An=01ln(11+x)dx=01ln(1+x)dx=1+x=t=12ln(t)dt=[tlntt]12={2ln22+1}={2ln21}=12ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *