Menu Close

calculate-lim-n-n-1-1-n-n-en-




Question Number 63215 by mathmax by abdo last updated on 30/Jun/19
calculate lim_(n→+∞) {n (1+(1/n))^n −en}
calculatelimn+{n(1+1n)nen}
Commented by mathmax by abdo last updated on 01/Jul/19
let  A_n =n(1+(1/n))^n −en ⇒ A_n =n{ (1+(1/n))^n −e}  we have  (1+(1/n))^n  =e^(nln(1+(1/n)))         but  ln(1+x) =Σ_(n=1) ^∞  (((−1)^(n−1) x^n )/n) =x−(x^2 /2)+(x^3 /3) −...⇒  ln(1+(1/n))=(1/n) −(1/(2n^2 ))+(1/(3n^3 )) +o((1/n^3 ))  (n→+∞) ⇒nln(1+(1/n))=1−(1/(2n)) +(1/(3n^2 ))o((1/n^2 )) ⇒  e^(nln(1+(1/n)))  =e^(1−(1/(2n)) +(1/(3n^2 ))o((1/n^2 )))  =e  e^(−(1/(2n))+(1/(3n^2 ))+o((1/n)))    due to e^u  =1+u +o(u) ⇒  e^(−(1/(2n))+o((1/n)))  =1−(1/(2n)) +(1/(3n^2 ))+o((1/n^2 )) ⇒ A_n =n{ e(1−(1/(2n))+(1/(3n^2 ))+o((1/n^2 ))−e} ⇒  A_n =(e/2) +(e/(3n)) +o((1/n)) ⇒lim_(n→+∞)  A_n    =(e/2)  =
letAn=n(1+1n)nenAn=n{(1+1n)ne}wehave(1+1n)n=enln(1+1n)butln(1+x)=n=1(1)n1xnn=xx22+x33ln(1+1n)=1n12n2+13n3+o(1n3)(n+)nln(1+1n)=112n+13n2o(1n2)enln(1+1n)=e112n+13n2o(1n2)=ee12n+13n2+o(1n)duetoeu=1+u+o(u)e12n+o(1n)=112n+13n2+o(1n2)An=n{e(112n+13n2+o(1n2)e}An=e2+e3n+o(1n)limn+An=e2=

Leave a Reply

Your email address will not be published. Required fields are marked *