Menu Close

calculate-lim-n-n-1-n-n-n-1-




Question Number 62656 by mathmax by abdo last updated on 24/Jun/19
calculate lim_(n→+∞)      (((n+1)^n )/n^(n+1) )
calculatelimn+(n+1)nnn+1
Commented by mathmax by abdo last updated on 24/Jun/19
let A_n =(((n+1)^n )/n^(n+1) ) ⇒ A_n =(((n+1)/n))^n  ×(1/n) =(1+(1/n))^n .(1/n)  (1+(1/n))^n  =e^(nln(1+(1/n)))     →e (n→+∞) ⇒lim_(n→+∞)  A_n =lim_(n→+∞)  (e/n) =0
letAn=(n+1)nnn+1An=(n+1n)n×1n=(1+1n)n.1n(1+1n)n=enln(1+1n)e(n+)limn+An=limn+en=0
Answered by MJS last updated on 24/Jun/19
(((n+1)^n )/n^(n+1) )=(n^n /n^(n+1) )+c_1 (n^(n−1) /n^(n+1) )+c_2 (n^(n−2) /n^(n+1) )+...+c_n (1/n^(n+1) )  lim_(n→+∞) (n^(n−k) /n^(n+1) )=0 for 0≤k≤n ⇒ lim_(n→+∞) (((n+1)^n )/n^(n+1) )=0
(n+1)nnn+1=nnnn+1+c1nn1nn+1+c2nn2nn+1++cn1nn+1limn+nnknn+1=0for0knlimn+(n+1)nnn+1=0

Leave a Reply

Your email address will not be published. Required fields are marked *