Menu Close

calculate-lim-n-n-ln-n-1-5-n-2-




Question Number 157171 by mathocean1 last updated on 20/Oct/21
calculate lim_(n→+∞) (((n+ln(n)+1)/((5+(√n))^2 )))
$${calculate}\:\underset{{n}\rightarrow+\infty} {{lim}}\left(\frac{{n}+{ln}\left({n}\right)+\mathrm{1}}{\left(\mathrm{5}+\sqrt{{n}}\right)^{\mathrm{2}} }\right) \\ $$
Answered by puissant last updated on 20/Oct/21
lim_(n→+∞) (((n+ln(n)+1)/((5+(√n))^2 )))=lim_(n→+∞) (((n(1+((ln(n))/n)+(1/n)))/(n((5/( (√n)))+1)^2 )))  =lim_(n→+∞) (((1+((ln(n))/n)+(1/n))/(((5/( (√n)))+1)^2 )))= 1..
$$\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{{n}+{ln}\left({n}\right)+\mathrm{1}}{\left(\mathrm{5}+\sqrt{{n}}\right)^{\mathrm{2}} }\right)=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{{n}\left(\mathrm{1}+\frac{{ln}\left({n}\right)}{{n}}+\frac{\mathrm{1}}{{n}}\right)}{{n}\left(\frac{\mathrm{5}}{\:\sqrt{{n}}}+\mathrm{1}\right)^{\mathrm{2}} }\right) \\ $$$$=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}+\frac{{ln}\left({n}\right)}{{n}}+\frac{\mathrm{1}}{{n}}}{\left(\frac{\mathrm{5}}{\:\sqrt{{n}}}+\mathrm{1}\right)^{\mathrm{2}} }\right)=\:\mathrm{1}.. \\ $$
Commented by mathocean1 last updated on 22/Oct/21
thanks le puissant.
$${thanks}\:{le}\:{puissant}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *