Menu Close

calculate-lim-n-S-n-with-S-n-1-n-4-k-1-n-k-3-1-k-n-2-3-




Question Number 42805 by maxmathsup by imad last updated on 02/Sep/18
calculate lim_(n→+∞)  S_n    with  S_n = (1/n^4 ) Σ_(k=1) ^n   (k^3 /( (√((1+((k/n))^2 )^3 ))))
calculatelimn+SnwithSn=1n4k=1nk3(1+(kn)2)3
Commented by maxmathsup by imad last updated on 03/Sep/18
we have S_n =(1/n) Σ_(k=1) ^n    ((((k/n))^3 )/( (√((1+((k/n))^2 )^3 )))) ⇒S_n  is a Rieman sum and  lim_(n→+∞)   S_n = ∫_0 ^1    (x^3 /( (√((1+x^2 )^3 ))))dx = ∫_0 ^1     (x^3 /(((√(1+x^2 )))^3 ))dx changemen (√(1+x^2 ))=t  give 1+x^2  =t^2  ⇒xdx =tdt ⇒ ∫_0 ^1    (x^3 /(((√(1+x^2 )^3 )))) dx = ∫_1 ^(√2) (((t^2 −1)tdt)/t^3 )  = ∫_1 ^(√2)  ((t^3 −t)/t^3 )dt = ∫_1 ^(√2)   (1−(1/t^2 )) =[t +(1/t)]_1 ^(√2)  =(√2)+(1/( (√2))) −2 =(3/( (√2))) −2 ⇒  lim_(n→+∞)   S_n = ((3−2(√2))/( (√2)))  .
wehaveSn=1nk=1n(kn)3(1+(kn)2)3SnisaRiemansumandlimn+Sn=01x3(1+x2)3dx=01x3(1+x2)3dxchangemen1+x2=tgive1+x2=t2xdx=tdt01x3(1+x2)3dx=12(t21)tdtt3=12t3tt3dt=12(11t2)=[t+1t]12=2+122=322limn+Sn=3222.
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18
lim_(n→∞) S_n =lim n→∞ Σ_(k=1) ^n (1/n)((((k/n))^3 )/( (√({1+((k/n))^2 }^3 ))))  ∫_0 ^1 (x^3 /( (√({1+x^2 }^3 ))))dx =∫_0 ^1 (x^3 /((1+x^2 )^(3/2) ))dx  t^2 =1+x^2    tdt=xdx  ∫_1 ^(√2) (((t^2 −1)tdt)/t^3 )  ∫_1 ^(√2) 1−(1/t^2 ) dt  ∣t+(1/t)∣_1 ^(√2)   ((√2) −1)+((1/( (√2)))−1)  =((2−(√2) +1−(√2))/( (√2)))=((3−2(√2))/( (√2)))
Double subscripts: use braces to clarify01x3{1+x2}3dx=01x3(1+x2)32dxt2=1+x2tdt=xdx12(t21)tdtt31211t2dtt+1t12(21)+(121)=22+122=3222

Leave a Reply

Your email address will not be published. Required fields are marked *