Menu Close

calculate-lim-n-x-n-1-cos-pi-x-n-with-x-from-R-and-x-0-




Question Number 37817 by prof Abdo imad last updated on 17/Jun/18
calculate lim_(n→+∞)  x^n (1−cos((π/x^n ))) with x  from R and x≠0
calculatelimn+xn(1cos(πxn))withxfromRandx0
Commented by prof Abdo imad last updated on 24/Jun/18
if  ∣x∣<1   lim_(n→+∞) x^n =0 chang.x^n =(1/t)  lim_(n→+∞) x^n (1−cos((π/x^n )))=lim_(t→+∞) (1/t)(1 −cos(πt))  =lim_(t→+∞) ((2sin^2 (((πt)/2)))/t) =0 because0≤ sin^2 (((πt)/2)) ≤1   if x>1 lim_(n→+∞) x^n =+∞ chang.x^n =(1/t)  lim_(n→+∞) x^n (1−cos((π/x^n )))=lim_(t→0) (1/t)(1−cos(πt))  but 1−cos(πt) ∼ ((π^2 t^2 )/2) ( t →0)⇒  ((1−cos(πt))/t) ∼ ((π^2 t)/2) →0(t→0) so  lim_(n→+∞)  x^n (1−cos((π/x^n )))=0.
ifx∣<1limn+xn=0chang.xn=1tlimn+xn(1cos(πxn))=limt+1t(1cos(πt))=limt+2sin2(πt2)t=0because0sin2(πt2)1ifx>1limn+xn=+chang.xn=1tlimn+xn(1cos(πxn))=limt01t(1cos(πt))but1cos(πt)π2t22(t0)1cos(πt)tπ2t20(t0)solimn+xn(1cos(πxn))=0.
Answered by behi83417@gmail.com last updated on 17/Jun/18
(1/x^n )=t,x→+∞⇒t→0  L=lim_(x→0) ((1−cosπt)/t)=lim_(x→0) ((((πt)^2 )/2)/t)=0 . ■
1xn=t,x+t0L=limx01cosπtt=limx0(πt)22t=0.◼
Commented by math khazana by abdo last updated on 18/Jun/18
sir Behi be carreful n→+∞ not x...
sirBehibecarrefuln+notx

Leave a Reply

Your email address will not be published. Required fields are marked *