Menu Close

Calculate-lim-x-0-1-x-2-x-1-x-3-x-1-x-2-lim-x-0-2e-x-x-1-1-x-2-1-x-lim-x-a-x-x-a-a-x-a-




Question Number 161723 by LEKOUMA last updated on 21/Dec/21
Calculate  lim_(x→0) (((1+x.2^x )/(1+x.3^x )))^(1/x^2 )   lim_(x→0) [2e^(x/(x+1)) −1]^((x^2 +1)/x)   lim_(x→a) ((x^x −a^a )/(x−a))
Calculatelimx0(1+x.2x1+x.3x)1x2limx0[2exx+11]x2+1xlimxaxxaaxa
Answered by cortano last updated on 21/Dec/21
(1) lim_(x→0)  (((1+x.2^x )/(1+x.3^x )))^(1/x^2 ) = e^(lim_(x→0)  ((x(2^x −3^x ))/x^2 ))       = e^(lim_(x→0) (((2^x −3^x )/x))) =e^(ln 2−ln 3)  = (2/3)
(1)limx0(1+x.2x1+x.3x)1x2=elimx0x(2x3x)x2=elimx0(2x3xx)=eln2ln3=23
Answered by cortano last updated on 21/Dec/21
(2) lim_(x→0) (2e^(x/(x+1)) −1)^((x^2 +1)/x) =e^(lim_(x→0) ((2(e^(x/(x+1)) −1)(x^2 +1))/x))     = e^(lim_(x→0) 2((1/((x+1)^2 )).e^(x/(x+1)) ))  = e^2
(2)limx0(2exx+11)x2+1x=elimx02(exx+11)(x2+1)x=elim2x0(1(x+1)2.exx+1)=e2
Commented by LEKOUMA last updated on 21/Dec/21
Many thanks
Manythanks
Answered by Ar Brandon last updated on 21/Dec/21
A=lim_(x→0) (((1+x∙2^x )/(1+x.3^x )))^(1/x^2 ) ⇒lnA=lim_(x→0) (1/x^2 )ln(((1+x.2^x )/(1+x.3^x )))  lnA=lim_(x→0) (1/x^2 )(x.2^x −x.3^x )=lim_(x→0) ((2^x −3^x )/x)=ln((2/3))  lnA=ln((2/3))⇒ determinant (((A=(2/3))))
A=limx0(1+x2x1+x.3x)1x2lnA=limx01x2ln(1+x.2x1+x.3x)lnA=limx01x2(x.2xx.3x)=limx02x3xx=ln(23)lnA=ln(23)A=23
Answered by Ar Brandon last updated on 21/Dec/21
B=lim_(x→a) ((x^x −a^a )/(x−a))=lim_(x→a) x^x (1+lnx)=a^a (1+lna)
B=limxaxxaaxa=limxaxx(1+lnx)=aa(1+lna)
Commented by LEKOUMA last updated on 21/Dec/21
Many thanks
Manythanks

Leave a Reply

Your email address will not be published. Required fields are marked *