Menu Close

Calculate-lim-x-0-1-x-lnt-1-t-dt-x-1-2-




Question Number 172064 by qaz last updated on 23/Jun/22
Calculate  ::  lim_(x→0^+ ) ((∫_1 ^x ((lnt)/(1+t))dt)/((x−1)^2 ))=?
$${Calculate}\:\:::\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\frac{\int_{\mathrm{1}} ^{{x}} \frac{{lnt}}{\mathrm{1}+{t}}{dt}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }=? \\ $$
Answered by puissant last updated on 23/Jun/22
= ∫_1 ^0 ((lnt)/(1+t))dt = −∫_0 ^1 ((lnt)/(1+t))dt = (π^2 /(12))
$$=\:\int_{\mathrm{1}} ^{\mathrm{0}} \frac{{lnt}}{\mathrm{1}+{t}}{dt}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnt}}{\mathrm{1}+{t}}{dt}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$
Answered by Mathspace last updated on 23/Jun/22
=lim_(x→1)    ((∫_1 ^x ((lnt)/(1+t))dt)/((x−1)^2 ))  =lim_(x→1) ((lnx)/((1+x)2(x−1)))  =lim_(x→1) (1/(2(x+1)))×((lnx)/(x−1))  =(1/4)×1=(1/4)
$$={lim}_{{x}\rightarrow\mathrm{1}} \:\:\:\frac{\int_{\mathrm{1}} ^{{x}} \frac{{lnt}}{\mathrm{1}+{t}}{dt}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$={lim}_{{x}\rightarrow\mathrm{1}} \frac{{lnx}}{\left(\mathrm{1}+{x}\right)\mathrm{2}\left({x}−\mathrm{1}\right)} \\ $$$$={lim}_{{x}\rightarrow\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}\left({x}+\mathrm{1}\right)}×\frac{{lnx}}{{x}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}×\mathrm{1}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *