Menu Close

Calculate-lim-x-0-1-x-lnt-1-t-dt-x-1-2-




Question Number 172064 by qaz last updated on 23/Jun/22
Calculate  ::  lim_(x→0^+ ) ((∫_1 ^x ((lnt)/(1+t))dt)/((x−1)^2 ))=?
Calculate::limx0+1xlnt1+tdt(x1)2=?
Answered by puissant last updated on 23/Jun/22
= ∫_1 ^0 ((lnt)/(1+t))dt = −∫_0 ^1 ((lnt)/(1+t))dt = (π^2 /(12))
=10lnt1+tdt=01lnt1+tdt=π212
Answered by Mathspace last updated on 23/Jun/22
=lim_(x→1)    ((∫_1 ^x ((lnt)/(1+t))dt)/((x−1)^2 ))  =lim_(x→1) ((lnx)/((1+x)2(x−1)))  =lim_(x→1) (1/(2(x+1)))×((lnx)/(x−1))  =(1/4)×1=(1/4)
=limx11xlnt1+tdt(x1)2=limx1lnx(1+x)2(x1)=limx112(x+1)×lnxx1=14×1=14

Leave a Reply

Your email address will not be published. Required fields are marked *