Menu Close

calculate-lim-x-0-1-x-sinx-1-x-2-




Question Number 62435 by mathsolverby Abdo last updated on 21/Jun/19
calculate lim_(x→0)   (((1+x)^(sinx) −1)/x^2 )
calculatelimx0(1+x)sinx1x2
Commented by Smail last updated on 22/Jun/19
(1+x)^(sinx) =e^(ln((1+x)^(sinx) )) =e^(sinx×ln(1+x))   ln(1+x)∼x  when x is near 0  sinx∼x  when  x is near 0  so (1+x)^(sinx) ∼e^(x×x) ∼e^x^2    e^x ∼1+x when x near 0  so  (1+x)^(sinx) ∼1+x^2   lim_(x→0) (((1+x)^(sinx) −1)/x^2 )=lim_(x→0) ((1+x^2 −1)/x^2 )  =1
(1+x)sinx=eln((1+x)sinx)=esinx×ln(1+x)ln(1+x)xwhenxisnear0sinxxwhenxisnear0so(1+x)sinxex×xex2ex1+xwhenxnear0so(1+x)sinx1+x2limx0(1+x)sinx1x2=limx01+x21x2=1
Commented by mathmax by abdo last updated on 23/Jun/19
let use hospital theorem  u(x) =(1+x)^(sinx) −1 ⇒u(x) =e^(sinxln(1+x)) −1 ⇒  u^′ (x) =(cosx ln(1+x) +((sinx)/(1+x)))e^(sinxln(1+x))  ⇒  u^((2)) (x) ={ −sinxln(1+x)+((cosx)/(1+x)) +(((1+x)cosx−sinx)/((1+x)^2 )))e^(sinxln(1+x))   +(cosx ln(1+x)+((sinx)/(1+x)))^2  e^(sinxln(1+x))  ⇒lim_(x→0)  u^((2)) (x)= 2  v(x) =x^2  ⇒g^′ (x) =2x and v^((2)) (x) =2 =lim_(x→0) g^((2)) (x) ⇒  lim_(x→0)  (((1+x)^(sinx) −1)/x^2 ) =lim_(x→0)   ((u^((2)) (x))/(v^((2)) (x))) =(2/2) =1 .
letusehospitaltheoremu(x)=(1+x)sinx1u(x)=esinxln(1+x)1u(x)=(cosxln(1+x)+sinx1+x)esinxln(1+x)u(2)(x)={sinxln(1+x)+cosx1+x+(1+x)cosxsinx(1+x)2)esinxln(1+x)+(cosxln(1+x)+sinx1+x)2esinxln(1+x)limx0u(2)(x)=2v(x)=x2g(x)=2xandv(2)(x)=2=limx0g(2)(x)limx0(1+x)sinx1x2=limx0u(2)(x)v(2)(x)=22=1.

Leave a Reply

Your email address will not be published. Required fields are marked *