Question Number 62435 by mathsolverby Abdo last updated on 21/Jun/19
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\left(\mathrm{1}+{x}\right)^{{sinx}} −\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$
Commented by Smail last updated on 22/Jun/19
$$\left(\mathrm{1}+{x}\right)^{{sinx}} ={e}^{{ln}\left(\left(\mathrm{1}+{x}\right)^{{sinx}} \right)} ={e}^{{sinx}×{ln}\left(\mathrm{1}+{x}\right)} \\ $$$${ln}\left(\mathrm{1}+{x}\right)\sim{x}\:\:{when}\:{x}\:{is}\:{near}\:\mathrm{0} \\ $$$${sinx}\sim{x}\:\:{when}\:\:{x}\:{is}\:{near}\:\mathrm{0} \\ $$$${so}\:\left(\mathrm{1}+{x}\right)^{{sinx}} \sim{e}^{{x}×{x}} \sim{e}^{{x}^{\mathrm{2}} } \\ $$$${e}^{{x}} \sim\mathrm{1}+{x}\:{when}\:{x}\:{near}\:\mathrm{0} \\ $$$${so}\:\:\left(\mathrm{1}+{x}\right)^{{sinx}} \sim\mathrm{1}+{x}^{\mathrm{2}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\left(\mathrm{1}+{x}\right)^{{sinx}} −\mathrm{1}}{{x}^{\mathrm{2}} }=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$=\mathrm{1} \\ $$
Commented by mathmax by abdo last updated on 23/Jun/19
$${let}\:{use}\:{hospital}\:{theorem}\:\:{u}\left({x}\right)\:=\left(\mathrm{1}+{x}\right)^{{sinx}} −\mathrm{1}\:\Rightarrow{u}\left({x}\right)\:={e}^{{sinxln}\left(\mathrm{1}+{x}\right)} −\mathrm{1}\:\Rightarrow \\ $$$${u}^{'} \left({x}\right)\:=\left({cosx}\:{ln}\left(\mathrm{1}+{x}\right)\:+\frac{{sinx}}{\mathrm{1}+{x}}\right){e}^{{sinxln}\left(\mathrm{1}+{x}\right)} \:\Rightarrow \\ $$$${u}^{\left(\mathrm{2}\right)} \left({x}\right)\:=\left\{\:−{sinxln}\left(\mathrm{1}+{x}\right)+\frac{{cosx}}{\mathrm{1}+{x}}\:+\frac{\left(\mathrm{1}+{x}\right){cosx}−{sinx}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\right){e}^{{sinxln}\left(\mathrm{1}+{x}\right)} \\ $$$$+\left({cosx}\:{ln}\left(\mathrm{1}+{x}\right)+\frac{{sinx}}{\mathrm{1}+{x}}\right)^{\mathrm{2}} \:{e}^{{sinxln}\left(\mathrm{1}+{x}\right)} \:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:{u}^{\left(\mathrm{2}\right)} \left({x}\right)=\:\mathrm{2} \\ $$$${v}\left({x}\right)\:={x}^{\mathrm{2}} \:\Rightarrow{g}^{'} \left({x}\right)\:=\mathrm{2}{x}\:{and}\:{v}^{\left(\mathrm{2}\right)} \left({x}\right)\:=\mathrm{2}\:={lim}_{{x}\rightarrow\mathrm{0}} {g}^{\left(\mathrm{2}\right)} \left({x}\right)\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\left(\mathrm{1}+{x}\right)^{{sinx}} −\mathrm{1}}{{x}^{\mathrm{2}} }\:={lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{u}^{\left(\mathrm{2}\right)} \left({x}\right)}{{v}^{\left(\mathrm{2}\right)} \left({x}\right)}\:=\frac{\mathrm{2}}{\mathrm{2}}\:=\mathrm{1}\:. \\ $$