Menu Close

calculate-lim-x-0-1-x-sinx-x-2-




Question Number 42786 by maxmathsup by imad last updated on 02/Sep/18
calculate lim_(x→0)    ((1−(x/(sinx)))/x^2 )
calculatelimx01xsinxx2
Commented by maxmathsup by imad last updated on 30/Sep/18
we have sinx = x−(x^3 /(3!)) +o(x^3 )  (x→0) ⇒  ((sinx −x)/(x^2 sinx))  ∼  ((−(x^3 /(3!)))/x^3 ) →−(1/6)  when x→0 ⇒  lim_(x→0)  ((1−(x/(sinx)))/x^2 ) =−(1/6) .
wehavesinx=xx33!+o(x3)(x0)sinxxx2sinxx33!x316whenx0limx01xsinxx2=16.
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18
lim_(x→0)  ((sinx−x)/(x^2 sinx))  ((0/0))  lim_(x→0)  ((cosx−1)/(x^2 cosx+sinx.2x))((0/0))  lim_(x→0)  ((sinx)/(−x^2 sinx+cosx.2x+sinx.2+2xcosx)) ((0/0))  lim_(x→0)  (((sinx)/x)/(−xsinx+2cosx+2((sinx)/x)+2cosx))  =(1/(−0+2+2+2))=(1/6)
limx0sinxxx2sinx(00)limx0cosx1x2cosx+sinx.2x(00)limx0sinxx2sinx+cosx.2x+sinx.2+2xcosx(00)limx0sinxxxsinx+2cosx+2sinxx+2cosx=10+2+2+2=16

Leave a Reply

Your email address will not be published. Required fields are marked *