Menu Close

calculate-lim-x-0-1-x-x-2-x-n-1-x-n-2-




Question Number 78623 by mathmax by abdo last updated on 19/Jan/20
calculate lim_(x→0)   (((√(1+x+x^2 +....+x^n ))  −1)/x^(n/2) )
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} +….+{x}^{{n}} }\:\:−\mathrm{1}}{{x}^{\frac{{n}}{\mathrm{2}}} } \\ $$
Answered by jagoll last updated on 19/Jan/20
lim_(x→0)  (((1+x+x^2 +x^3 +...+x^n )−1)/(((√(1+x+x^2 +...+x^n  )) +1) x^(n/2) )) =   lim_(x→0)  ((x^(1−(n/2)) +x^(2−(n/2)) +x^(3−(n/2)) +...+x^(n/2) )/((2 ))) = 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{3}} +…+\mathrm{x}^{\mathrm{n}} \right)−\mathrm{1}}{\left(\sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} +…+\mathrm{x}^{\mathrm{n}} \:}\:+\mathrm{1}\right)\:\mathrm{x}^{\frac{\mathrm{n}}{\mathrm{2}}} }\:=\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{1}−\frac{\mathrm{n}}{\mathrm{2}}} +\mathrm{x}^{\mathrm{2}−\frac{\mathrm{n}}{\mathrm{2}}} +\mathrm{x}^{\mathrm{3}−\frac{\mathrm{n}}{\mathrm{2}}} +…+\mathrm{x}^{\frac{\mathrm{n}}{\mathrm{2}}} }{\left(\mathrm{2}\:\right)}\:=\:\mathrm{0} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *