Menu Close

calculate-lim-x-0-2x-ln-1-x-1-x-cosx-




Question Number 40118 by maxmathsup by imad last updated on 15/Jul/18
calculate  lim_(x→0)      ((2x)/(ln(((1+x)/(1−x))))) −cosx
$${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{\mathrm{2}{x}}{{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)}\:−{cosx} \\ $$
Commented by math khazana by abdo last updated on 19/Jul/18
let A(x)= ((2x)/(ln(((1+x)/(1−x))))) −cosx  A(x) =((2x)/(ln(1+x)−ln(1−x))) −cosx but  ln^′ (1+x) =(1/(1+x)) =1−x +o(x^2 ) ⇒  ln(1+x)=x−(x^2 /2) +o(x^3 ) and  ln(1−x) =−x −(x^2 /2) +o(x^3 ) ⇒  ln(1+x)−ln(1−x)= 2x +o(x^3 )  also  cosx ∼1−(x^2 /2)(x→0) ⇒  A(x)  ∼  1−(1−(x^2 /2)) ⇒lim_(x→0)   A(x)=0 .
$${let}\:{A}\left({x}\right)=\:\frac{\mathrm{2}{x}}{{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)}\:−{cosx} \\ $$$${A}\left({x}\right)\:=\frac{\mathrm{2}{x}}{{ln}\left(\mathrm{1}+{x}\right)−{ln}\left(\mathrm{1}−{x}\right)}\:−{cosx}\:{but} \\ $$$${ln}^{'} \left(\mathrm{1}+{x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\mathrm{1}−{x}\:+{o}\left({x}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{x}\right)={x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({x}^{\mathrm{3}} \right)\:{and} \\ $$$${ln}\left(\mathrm{1}−{x}\right)\:=−{x}\:−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({x}^{\mathrm{3}} \right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{x}\right)−{ln}\left(\mathrm{1}−{x}\right)=\:\mathrm{2}{x}\:+{o}\left({x}^{\mathrm{3}} \right)\:\:{also} \\ $$$${cosx}\:\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow \\ $$$${A}\left({x}\right)\:\:\sim\:\:\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:\:{A}\left({x}\right)=\mathrm{0}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *