Menu Close

calculate-lim-x-0-2x-ln-1-x-1-x-cosx-




Question Number 40118 by maxmathsup by imad last updated on 15/Jul/18
calculate  lim_(x→0)      ((2x)/(ln(((1+x)/(1−x))))) −cosx
calculatelimx02xln(1+x1x)cosx
Commented by math khazana by abdo last updated on 19/Jul/18
let A(x)= ((2x)/(ln(((1+x)/(1−x))))) −cosx  A(x) =((2x)/(ln(1+x)−ln(1−x))) −cosx but  ln^′ (1+x) =(1/(1+x)) =1−x +o(x^2 ) ⇒  ln(1+x)=x−(x^2 /2) +o(x^3 ) and  ln(1−x) =−x −(x^2 /2) +o(x^3 ) ⇒  ln(1+x)−ln(1−x)= 2x +o(x^3 )  also  cosx ∼1−(x^2 /2)(x→0) ⇒  A(x)  ∼  1−(1−(x^2 /2)) ⇒lim_(x→0)   A(x)=0 .
letA(x)=2xln(1+x1x)cosxA(x)=2xln(1+x)ln(1x)cosxbutln(1+x)=11+x=1x+o(x2)ln(1+x)=xx22+o(x3)andln(1x)=xx22+o(x3)ln(1+x)ln(1x)=2x+o(x3)alsocosx1x22(x0)A(x)1(1x22)limx0A(x)=0.

Leave a Reply

Your email address will not be published. Required fields are marked *