Menu Close

calculate-lim-x-0-2x-ln-1-x-1-x-cosx-




Question Number 42788 by maxmathsup by imad last updated on 02/Sep/18
calculate  lim_(x→0)   ((2x)/(ln(((1+x)/(1−x))))) −cosx
calculatelimx02xln(1+x1x)cosx
Commented by maxmathsup by imad last updated on 30/Sep/18
we have ((2x)/(ln(((1+x)/(1−x))))) =((2x)/(ln(1+x)−ln(1−x))) but  ln( 1+x) ∼ x and ln(1−x)∼−x ⇒ln(1+x)−ln(1−x)∼2x ⇒  lim_(x→0)     ((2x)/(ln(((1+x)/(1−x))))) −cosx =lim_(x→)   ((2x)/(2x)) −1 =1−1 =0 .
wehave2xln(1+x1x)=2xln(1+x)ln(1x)butln(1+x)xandln(1x)xln(1+x)ln(1x)2xlimx02xln(1+x1x)cosx=limx2x2x1=11=0.
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18
lim_(x→0)   ((2x)/(2(x+(x^3 /3)+(x^5 /5)...)))−cosx  lim_(x→0)  (1/(1+(x^2 /3)+(x^4 /5)+..))−cosx  =1−1=0
limx02x2(x+x33+x55)cosxlimx011+x23+x45+..cosx=11=0

Leave a Reply

Your email address will not be published. Required fields are marked *