Menu Close

calculate-lim-x-0-cos-x-cot-x-




Question Number 188819 by mnjuly1970 last updated on 07/Mar/23
         calculate                    lim_( x→ 0^( +) ) ( (√( cos ( (√x) ))) )^( cot( x ))  = ?
$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{calculate}\: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \left(\:\sqrt{\:\mathrm{cos}\:\left(\:\sqrt{{x}}\:\right)}\:\right)^{\:\mathrm{cot}\left(\:{x}\:\right)} \:=\:?\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$
Commented by mehdee42 last updated on 07/Mar/23
         calculate                    lim_( x→ 0^( +) ) ( (√( cos ( (√x) ))) )^( cot( x ))  = ?                  notic  if lim_(x→a) f(x)=1 & lim_(x→a) g(x)=∞  ⇒lim_(x→a) f(x)^(g(x)) =e^(lim_(x→a) (f(x)−1)g(x))   lim_(x→0^+ ) (((√(cos(√x)))−1)/(tanx))=^(hop) lim_(x→a) (((−sin(√x))/(2(√x)))/(2(1+tanx)(√(cos(√x)))))=−(1/4)  ⇒answr is : (1/( (e)^(1/4) ))
$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{calculate}\: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \left(\:\sqrt{\:\mathrm{cos}\:\left(\:\sqrt{{x}}\:\right)}\:\right)^{\:\mathrm{cot}\left(\:{x}\:\right)} \:=\:?\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$$${notic} \\ $$$${if}\:{lim}_{{x}\rightarrow{a}} {f}\left({x}\right)=\mathrm{1}\:\&\:{lim}_{{x}\rightarrow{a}} {g}\left({x}\right)=\infty \\ $$$$\Rightarrow{lim}_{{x}\rightarrow{a}} {f}\left({x}\right)^{{g}\left({x}\right)} ={e}^{{lim}_{{x}\rightarrow{a}} \left({f}\left({x}\right)−\mathrm{1}\right){g}\left({x}\right)} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{+} } \frac{\sqrt{{cos}\sqrt{{x}}}−\mathrm{1}}{{tanx}}\overset{{hop}} {=}{lim}_{{x}\rightarrow{a}} \frac{\frac{−{sin}\sqrt{{x}}}{\mathrm{2}\sqrt{{x}}}}{\mathrm{2}\left(\mathrm{1}+{tanx}\right)\sqrt{{cos}\sqrt{{x}}}}=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{answr}\:{is}\::\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{{e}}} \\ $$$$ \\ $$
Answered by mahdipoor last updated on 07/Mar/23
y=((√(cos((√x)))))^(cot(x)) =[cos((√x))]^((cot(x))/2)   ⇒ln(y)=((cot(x))/2)ln(cos((√x)))=((ln(cos((√x))))/(2tan(x)))  ⇒x→0^+    lim[ln(y)]=lim((ln(cos(√x)))/(2tan(x)))  ⇒=(0/0) , Hop ⇒=((((−sin((√x)))/(cos((√x)))).(1/(2(√x))))/(2/(cos^2 (x))))=  ((−cos^2 (x))/(4cos((√x))))×[((sin((√x)))/( (√x)))]=((−1)/4)×((sin(√x))/( (√x)))  ⇒hop ⇒((cos((√x))×(1/(2(√x))))/(1/(2(√x))))=cos(√x)=1  ⇒⇒lim    ln(y)=((−1)/4)×1  ⇒lim   y=(1/(^4 (√e)))  ...............Note:    get lim  x→c   ((f(x))/(g(x)))=   ,   f(c)=g(c)=0  ((f(x))/(g(x)))=k(x)((u(x))/(v(x)))  that   k(c)≠0,u(c)=v(c)=0  ⇒ hop ⇒ ((k^′ (c)u(c)+k(c)u^′ (c))/(v^′ (c)))=k(c)((u^′ (c))/(v^′ (c)))  ...............
$${y}=\left(\sqrt{{cos}\left(\sqrt{{x}}\right)}\right)^{{cot}\left({x}\right)} =\left[{cos}\left(\sqrt{{x}}\right)\right]^{\frac{{cot}\left({x}\right)}{\mathrm{2}}} \\ $$$$\Rightarrow{ln}\left({y}\right)=\frac{{cot}\left({x}\right)}{\mathrm{2}}{ln}\left({cos}\left(\sqrt{{x}}\right)\right)=\frac{{ln}\left({cos}\left(\sqrt{{x}}\right)\right)}{\mathrm{2}{tan}\left({x}\right)} \\ $$$$\Rightarrow{x}\rightarrow\mathrm{0}^{+} \:\:\:{lim}\left[{ln}\left({y}\right)\right]={lim}\frac{{ln}\left({cos}\sqrt{{x}}\right)}{\mathrm{2}{tan}\left({x}\right)} \\ $$$$\Rightarrow=\frac{\mathrm{0}}{\mathrm{0}}\:,\:{Hop}\:\Rightarrow=\frac{\frac{−{sin}\left(\sqrt{{x}}\right)}{{cos}\left(\sqrt{{x}}\right)}.\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}}{\frac{\mathrm{2}}{{cos}^{\mathrm{2}} \left({x}\right)}}= \\ $$$$\frac{−{cos}^{\mathrm{2}} \left({x}\right)}{\mathrm{4}{cos}\left(\sqrt{{x}}\right)}×\left[\frac{{sin}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}}\right]=\frac{−\mathrm{1}}{\mathrm{4}}×\frac{{sin}\sqrt{{x}}}{\:\sqrt{{x}}} \\ $$$$\Rightarrow{hop}\:\Rightarrow\frac{{cos}\left(\sqrt{{x}}\right)×\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}}{\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}}={cos}\sqrt{{x}}=\mathrm{1} \\ $$$$\Rightarrow\Rightarrow{lim}\:\:\:\:{ln}\left({y}\right)=\frac{−\mathrm{1}}{\mathrm{4}}×\mathrm{1}\:\:\Rightarrow{lim}\:\:\:{y}=\frac{\mathrm{1}}{\:^{\mathrm{4}} \sqrt{{e}}} \\ $$$$……………{Note}:\:\: \\ $$$${get}\:{lim}\:\:{x}\rightarrow{c}\:\:\:\frac{{f}\left({x}\right)}{{g}\left({x}\right)}=\:\:\:,\:\:\:{f}\left({c}\right)={g}\left({c}\right)=\mathrm{0} \\ $$$$\frac{{f}\left({x}\right)}{{g}\left({x}\right)}={k}\left({x}\right)\frac{{u}\left({x}\right)}{{v}\left({x}\right)}\:\:{that}\:\:\:{k}\left({c}\right)\neq\mathrm{0},{u}\left({c}\right)={v}\left({c}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{hop}\:\Rightarrow\:\frac{{k}^{'} \left({c}\right){u}\left({c}\right)+{k}\left({c}\right){u}^{'} \left({c}\right)}{{v}^{'} \left({c}\right)}={k}\left({c}\right)\frac{{u}^{'} \left({c}\right)}{{v}^{'} \left({c}\right)} \\ $$$$…………… \\ $$
Commented by mnjuly1970 last updated on 07/Mar/23
sepas ostad
$${sepas}\:{ostad} \\ $$
Answered by qaz last updated on 07/Mar/23
lim_(x→0^+ ) ((√(cos (√x))))^(cot x) =lim_(x→0^+ ) (1−(1/4)x+o(x))^(1/(x+o(x))) =e^(−4)
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\left(\sqrt{\mathrm{cos}\:\sqrt{{x}}}\right)^{\mathrm{cot}\:{x}} =\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}{x}+{o}\left({x}\right)\right)^{\frac{\mathrm{1}}{{x}+{o}\left({x}\right)}} ={e}^{−\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *