Menu Close

calculate-lim-x-0-cos-x-cot-x-




Question Number 188819 by mnjuly1970 last updated on 07/Mar/23
         calculate                    lim_( x→ 0^( +) ) ( (√( cos ( (√x) ))) )^( cot( x ))  = ?
calculatelimx0+(cos(x))cot(x)=?
Commented by mehdee42 last updated on 07/Mar/23
         calculate                    lim_( x→ 0^( +) ) ( (√( cos ( (√x) ))) )^( cot( x ))  = ?                  notic  if lim_(x→a) f(x)=1 & lim_(x→a) g(x)=∞  ⇒lim_(x→a) f(x)^(g(x)) =e^(lim_(x→a) (f(x)−1)g(x))   lim_(x→0^+ ) (((√(cos(√x)))−1)/(tanx))=^(hop) lim_(x→a) (((−sin(√x))/(2(√x)))/(2(1+tanx)(√(cos(√x)))))=−(1/4)  ⇒answr is : (1/( (e)^(1/4) ))
calculatelimx0+(cos(x))cot(x)=?noticiflimxaf(x)=1&limxag(x)=limxaf(x)g(x)=elimxa(f(x)1)g(x)limx0+cosx1tanx=hoplimxasinx2x2(1+tanx)cosx=14answris:1e4
Answered by mahdipoor last updated on 07/Mar/23
y=((√(cos((√x)))))^(cot(x)) =[cos((√x))]^((cot(x))/2)   ⇒ln(y)=((cot(x))/2)ln(cos((√x)))=((ln(cos((√x))))/(2tan(x)))  ⇒x→0^+    lim[ln(y)]=lim((ln(cos(√x)))/(2tan(x)))  ⇒=(0/0) , Hop ⇒=((((−sin((√x)))/(cos((√x)))).(1/(2(√x))))/(2/(cos^2 (x))))=  ((−cos^2 (x))/(4cos((√x))))×[((sin((√x)))/( (√x)))]=((−1)/4)×((sin(√x))/( (√x)))  ⇒hop ⇒((cos((√x))×(1/(2(√x))))/(1/(2(√x))))=cos(√x)=1  ⇒⇒lim    ln(y)=((−1)/4)×1  ⇒lim   y=(1/(^4 (√e)))  ...............Note:    get lim  x→c   ((f(x))/(g(x)))=   ,   f(c)=g(c)=0  ((f(x))/(g(x)))=k(x)((u(x))/(v(x)))  that   k(c)≠0,u(c)=v(c)=0  ⇒ hop ⇒ ((k^′ (c)u(c)+k(c)u^′ (c))/(v^′ (c)))=k(c)((u^′ (c))/(v^′ (c)))  ...............
y=(cos(x))cot(x)=[cos(x)]cot(x)2ln(y)=cot(x)2ln(cos(x))=ln(cos(x))2tan(x)x0+lim[ln(y)]=limln(cosx)2tan(x)⇒=00,Hop⇒=sin(x)cos(x).12x2cos2(x)=cos2(x)4cos(x)×[sin(x)x]=14×sinxxhopcos(x)×12x12x=cosx=1⇒⇒limln(y)=14×1limy=14eNote:getlimxcf(x)g(x)=,f(c)=g(c)=0f(x)g(x)=k(x)u(x)v(x)thatk(c)0,u(c)=v(c)=0hopk(c)u(c)+k(c)u(c)v(c)=k(c)u(c)v(c)
Commented by mnjuly1970 last updated on 07/Mar/23
sepas ostad
sepasostad
Answered by qaz last updated on 07/Mar/23
lim_(x→0^+ ) ((√(cos (√x))))^(cot x) =lim_(x→0^+ ) (1−(1/4)x+o(x))^(1/(x+o(x))) =e^(−4)
limx0+(cosx)cotx=limx0+(114x+o(x))1x+o(x)=e4

Leave a Reply

Your email address will not be published. Required fields are marked *