Question Number 188819 by mnjuly1970 last updated on 07/Mar/23

Commented by mehdee42 last updated on 07/Mar/23

Answered by mahdipoor last updated on 07/Mar/23
![y=((√(cos((√x)))))^(cot(x)) =[cos((√x))]^((cot(x))/2) ⇒ln(y)=((cot(x))/2)ln(cos((√x)))=((ln(cos((√x))))/(2tan(x))) ⇒x→0^+ lim[ln(y)]=lim((ln(cos(√x)))/(2tan(x))) ⇒=(0/0) , Hop ⇒=((((−sin((√x)))/(cos((√x)))).(1/(2(√x))))/(2/(cos^2 (x))))= ((−cos^2 (x))/(4cos((√x))))×[((sin((√x)))/( (√x)))]=((−1)/4)×((sin(√x))/( (√x))) ⇒hop ⇒((cos((√x))×(1/(2(√x))))/(1/(2(√x))))=cos(√x)=1 ⇒⇒lim ln(y)=((−1)/4)×1 ⇒lim y=(1/(^4 (√e))) ...............Note: get lim x→c ((f(x))/(g(x)))= , f(c)=g(c)=0 ((f(x))/(g(x)))=k(x)((u(x))/(v(x))) that k(c)≠0,u(c)=v(c)=0 ⇒ hop ⇒ ((k^′ (c)u(c)+k(c)u^′ (c))/(v^′ (c)))=k(c)((u^′ (c))/(v^′ (c))) ...............](https://www.tinkutara.com/question/Q188823.png)
Commented by mnjuly1970 last updated on 07/Mar/23

Answered by qaz last updated on 07/Mar/23
