Menu Close

calculate-lim-x-0-ln-1-ln-1-x-x-




Question Number 82920 by abdomathmax last updated on 25/Feb/20
calculate lim_(x→0) ((ln(1+ln(1+x)))/x)
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{ln}\left(\mathrm{1}+{ln}\left(\mathrm{1}+{x}\right)\right)}{{x}} \\ $$
Answered by mind is power last updated on 25/Feb/20
ln(1+x)∼x  ⇒ln(1+ln(1+x))∼ln(1+x)  ((ln(1+x))/x)→1  ⇒lim_(x→0) ((ln(1+ln(1+x)))/x)→1
$${ln}\left(\mathrm{1}+{x}\right)\sim{x} \\ $$$$\Rightarrow{ln}\left(\mathrm{1}+{ln}\left(\mathrm{1}+{x}\right)\right)\sim{ln}\left(\mathrm{1}+{x}\right) \\ $$$$\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}\rightarrow\mathrm{1} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left(\mathrm{1}+{ln}\left(\mathrm{1}+{x}\right)\right)}{{x}}\rightarrow\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *