Menu Close

calculate-lim-x-0-ln-1-x-x-x-2-




Question Number 32991 by abdo imad last updated on 09/Apr/18
calculate lim_(x→0)  ((ln(1+x) −x)/x^2 ) .
calculatelimx0ln(1+x)xx2.
Commented by prof Abdo imad last updated on 09/Apr/18
for ∣x∣<1   (ln(1+x))^′ = (1/(1+x)) =Σ_(n=0) ^∞ (−1)^n  x^n   ⇒ ln(1+x)= Σ_(n=0) ^∞   (((−1)^n )/(n+1))x^(n+1)   = Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n   = x −(x^2 /2)  +o(x^3 )⇒ ln(1+x)−x = −(x^2 /2)+o(x^3 )  ⇒ ((ln(1+x)−x)/x^2 ) =−(1/2) +o(x)⇒  lim_(x→0)   ((ln(1+x)−x)/x^2 ) =((−1)/2) .
forx∣<1(ln(1+x))=11+x=n=0(1)nxnln(1+x)=n=0(1)nn+1xn+1=n=1(1)n1nxn=xx22+o(x3)ln(1+x)x=x22+o(x3)ln(1+x)xx2=12+o(x)limx0ln(1+x)xx2=12.
Answered by kyle_TW last updated on 09/Apr/18
L′Ho^(�) pital′s rule  lim_(x→0) ((ln(1+x)−x)/x^2 )  =lim_(x→0)  (((ln(1+x)−x)′)/((x^2 )′))  =lim_(x→0) ((((1/(1+x))−1)/(2x)))  =lim_(x→0) (((1−1+x)/(2x(1+x))))  =lim_(x→0) ((1/(2(1+x))))= (1/2)
LHopitalsrulelimx0ln(1+x)xx2=limx0(ln(1+x)x)(x2)=limx0(11+x12x)=limx0(11+x2x(1+x))=limx0(12(1+x))=12
Commented by MJS last updated on 09/Apr/18
you made one small mistake  (((1/(1+x))−1)/(2x))=((1−1−x)/(2x(1+x)))
youmadeonesmallmistake11+x12x=11x2x(1+x)

Leave a Reply

Your email address will not be published. Required fields are marked *