Menu Close

calculate-lim-x-0-sh-2sinx-sin-sh-2x-x-2-




Question Number 148568 by mathmax by abdo last updated on 29/Jul/21
calculate lim_(x→0)    ((sh(2sinx)−sin(sh(2x)))/x^2 )
calculatelimx0sh(2sinx)sin(sh(2x))x2
Answered by Ar Brandon last updated on 29/Jul/21
L=lim_(x→0) ((sh(2sinx)−sin(sh(2x)))/x^2 )       =lim_(x→0) ((2sinx−sh2x)/x^2 )=lim_(x→0) ((2x−2x)/x^2 )=0
L=limx0sh(2sinx)sin(sh(2x))x2=limx02sinxsh2xx2=limx02x2xx2=0
Answered by mathmax by abdo last updated on 29/Jul/21
u(x)=sh(2sinx)−sin(sh(2x))  and v(x)=x^2   u^′ (x)=2cosxch(2sinx)−2ch(2x)cos(sh(2x))  ⇒u^((2)) (x)=−2sinxch(2sinx)+4cos^2 xsh(2sinx)−4sh(2x)cos(sh(2x))  +4ch^2 (2x) sin(sh(2x)) ⇒lim_(x→0) u^((2)) (x)=0  v(x)=x^2  ⇒v^′ (x)=2x and v^((2)) (x)=2 =lim_(x→0) v^((2)) (x) ⇒  lim_(x→0) ((u(x))/(v(x)))=lim_(x→0)  ((u^((2)) (x))/(v^((2)) (x)))=0
u(x)=sh(2sinx)sin(sh(2x))andv(x)=x2u(x)=2cosxch(2sinx)2ch(2x)cos(sh(2x))u(2)(x)=2sinxch(2sinx)+4cos2xsh(2sinx)4sh(2x)cos(sh(2x))+4ch2(2x)sin(sh(2x))limx0u(2)(x)=0v(x)=x2v(x)=2xandv(2)(x)=2=limx0v(2)(x)limx0u(x)v(x)=limx0u(2)(x)v(2)(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *