Menu Close

calculate-lim-x-0-x-1-x-2-1-ln-1-t-e-t-dt-




Question Number 39840 by math khazana by abdo last updated on 12/Jul/18
calculate lim_(x→0)     ∫_(x+1) ^(x^2  +1)   ln(1+t) e^(−t) dt
calculatelimx0x+1x2+1ln(1+t)etdt
Commented by abdo mathsup 649 cc last updated on 12/Jul/18
∃?c∈ ]x+1,x^2  +1[  /  A(x)=∫_(x+1) ^(x^2  +1) ln(1+t)e^(−t)  dt = e^(−c)  ∫_(x+1) ^(x^2  +1) ln(1+t)dt but  ∫_(x+1) ^(x^2  +1) ln(1+t) dt =_(1+t =u)   ∫_(x+2) ^(x^2  +2)  ln(u)du  =[uln(u)−u]_(x+2) ^(x^2  +2) =(x^2 +2)ln(x^(2 ) +2)−(x^2  +2)  (x+2)ln(x+2) +x+2 ⇒  lim_(x→0)   ∫_(x+1) ^(x^2  +1) ln(1+t)dt =0 also x→0⇒c→1 ⇒  lim_(x→0) A(x) =e^(−1) .0 =0
?c]x+1,x2+1[/A(x)=x+1x2+1ln(1+t)etdt=ecx+1x2+1ln(1+t)dtbutx+1x2+1ln(1+t)dt=1+t=ux+2x2+2ln(u)du=[uln(u)u]x+2x2+2=(x2+2)ln(x2+2)(x2+2)(x+2)ln(x+2)+x+2limx0x+1x2+1ln(1+t)dt=0alsox0c1limx0A(x)=e1.0=0

Leave a Reply

Your email address will not be published. Required fields are marked *