Menu Close

calculate-lim-x-0-x-coth-x-1-x-2-




Question Number 38206 by prof Abdo imad last updated on 22/Jun/18
calculate lim_(x→0)  ((x coth(x)−1)/x^2 )
calculatelimx0xcoth(x)1x2
Commented by math khazana by abdo last updated on 25/Jun/18
we have proved that   coth(x)−(1/x) =Σ_(n=1) ^∞    ((2x)/(x^2  +n^2 π^2 ))   (x≠o) ⇒  ((xcoth(x)−1)/x^2 ) =2 Σ_(n=1) ^∞    (1/(x^2  +n^2 π^2 )) ⇒  lim_(x→0)  ((xcoth(x)−1)/x^2 ) = (2/π^2 ) Σ_(n=1) ^∞   (1/n^2 )  =(2/π^2 )  (π^2 /6)  = (1/3)  .
wehaveprovedthatcoth(x)1x=n=12xx2+n2π2(xo)xcoth(x)1x2=2n=11x2+n2π2limx0xcoth(x)1x2=2π2n=11n2=2π2π26=13.
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jun/18
lim_(x→0) ((x(((e^x +e^(−x) )/(e^x −e^(−x) )))−1)/x^2 )  e^x =1+x+(x^2 /(2!))+(x^3 /(3!))+...  e^(−x) =1−x+(x^2 /(2!))−(x^3 /(3!))+...  x(((e^x +e^(−x) )/(e^x −e^(−x) )))=x(((1+(x^2 /(2!))+(x^4 /(4!))+...)/(x+(x^3 /(3!))+(x^5 /(5!))+...)))=((1+(x^2 /(2!))+...)/(1+(x^2 /(3!))+..))  lim_(x→0) ((((1+(x^2 /(2!))+(x^4 /(4!))+..)/(1+(x^2 /(3!))+(x^4 /(5!))+..)) −1)/x^2 )  =lim_(x→0) ((x^2 ((1/(2!))−(1/(3!)))+x^2 f(x))/x^2 )  when x→0  f(x)→0  =(1/2)−(1/6)=((3−1)/6)=(1/3)ANS
limx0x(ex+exexex)1x2ex=1+x+x22!+x33!+ex=1x+x22!x33!+x(ex+exexex)=x(1+x22!+x44!+x+x33!+x55!+)=1+x22!+1+x23!+..limx01+x22!+x44!+..1+x23!+x45!+..1x2=limx0x2(12!13!)+x2f(x)x2whenx0f(x)0=1216=316=13ANS

Leave a Reply

Your email address will not be published. Required fields are marked *