Menu Close

calculate-lim-x-0-x-x-2-ln-1-t-sin-t-dt-




Question Number 48175 by Abdo msup. last updated on 20/Nov/18
calculate lim_(x→0)  ∫_x ^x^2     ((ln(1+t))/(sin(t)))dt
calculatelimx0xx2ln(1+t)sin(t)dt
Commented by maxmathsup by imad last updated on 20/Nov/18
∃ c ∈]x,x^2 [ /A(x)=∫_x ^x^2  ((ln(1+t))/(sin(t)))dt =(1/(sinc)) ∫_x ^x^2   ln(1+t)dt  but  ∫_x ^x^2  ln(1+t)dt =_(1+t=u)   ∫_(1+x) ^(1+x^2 ) ln(u)du =[uln(u)−u]_(1+x) ^(1+x^2 )   =(1+x^2 )ln(1+x^2 )−(1+x^2 )−(1+x)ln(1+x)+1+x  ∼(1+x^2 )x^2 +x−x^2  −x(1+x)=x^2  +x^4 −2x^2 =x^4 −x^2    x<c<x^2  ⇒∃α /c =αx +(1−α)x^2   and sinc∼c ⇒  ((x^4 −x^2 )/(αx (1−α)x^2 )) =((x^3 −x)/(α +(1−α)x)) →0 so lim_(x→0)  A(x)=0
c]x,x2[/A(x)=xx2ln(1+t)sin(t)dt=1sincxx2ln(1+t)dtbutxx2ln(1+t)dt=1+t=u1+x1+x2ln(u)du=[uln(u)u]1+x1+x2=(1+x2)ln(1+x2)(1+x2)(1+x)ln(1+x)+1+x(1+x2)x2+xx2x(1+x)=x2+x42x2=x4x2x<c<x2α/c=αx+(1α)x2andsinccx4x2αx(1α)x2=x3xα+(1α)x0solimx0A(x)=0
Commented by maxmathsup by imad last updated on 20/Nov/18
α∈]0,1[ .
α]0,1[.
Answered by tanmay.chaudhury50@gmail.com last updated on 20/Nov/18
I=∫_x ^x^2  ((ln(1+t))/(sint))dt  (dI/dx)=∫_x ^x^2  (∂/∂x)(((ln(1+t))/(sint)))dt +((ln(1+x^2 ))/(sinx^2 ))×(dx^2 /dx)−((ln(1+x))/(sinx))×(dx/dx)  =2x×((ln(1+x^2 ))/(sinx^2 ))−((ln(1+x))/(sinx))  =2x×((ln(1+x^2 ))/x^2 )×(1/((sinx^2 )/x^2 ))−((ln(1+x))/x)×(1/((sinx)/x))  when x→0  =2×0×(1/1)−1=−(dI/dx)  (dI/dx)=−1   I=−x+c
I=xx2ln(1+t)sintdtdIdx=xx2x(ln(1+t)sint)dt+ln(1+x2)sinx2×dx2dxln(1+x)sinx×dxdx=2x×ln(1+x2)sinx2ln(1+x)sinx=2x×ln(1+x2)x2×1sinx2x2ln(1+x)x×1sinxxwhenx0=2×0×111=dIdxdIdx=1I=x+c
Commented by tanmay.chaudhury50@gmail.com last updated on 20/Nov/18
pls check sir ...
plschecksir

Leave a Reply

Your email address will not be published. Required fields are marked *