Question Number 48175 by Abdo msup. last updated on 20/Nov/18

Commented by maxmathsup by imad last updated on 20/Nov/18
![∃ c ∈]x,x^2 [ /A(x)=∫_x ^x^2 ((ln(1+t))/(sin(t)))dt =(1/(sinc)) ∫_x ^x^2 ln(1+t)dt but ∫_x ^x^2 ln(1+t)dt =_(1+t=u) ∫_(1+x) ^(1+x^2 ) ln(u)du =[uln(u)−u]_(1+x) ^(1+x^2 ) =(1+x^2 )ln(1+x^2 )−(1+x^2 )−(1+x)ln(1+x)+1+x ∼(1+x^2 )x^2 +x−x^2 −x(1+x)=x^2 +x^4 −2x^2 =x^4 −x^2 x<c<x^2 ⇒∃α /c =αx +(1−α)x^2 and sinc∼c ⇒ ((x^4 −x^2 )/(αx (1−α)x^2 )) =((x^3 −x)/(α +(1−α)x)) →0 so lim_(x→0) A(x)=0](https://www.tinkutara.com/question/Q48199.png)
Commented by maxmathsup by imad last updated on 20/Nov/18
![α∈]0,1[ .](https://www.tinkutara.com/question/Q48200.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 20/Nov/18

Commented by tanmay.chaudhury50@gmail.com last updated on 20/Nov/18
