Menu Close

Calculate-lim-x-0-x-x-sin-x-tan-2-x-1-3-




Question Number 166801 by mathocean1 last updated on 28/Feb/22
Calculate:  lim_(x→0) ((x−(√x))/( ((sin(x)−tan^2 (x)))^(1/3) ))
$${Calculate}: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{x}−\sqrt{{x}}}{\:\sqrt[{\mathrm{3}}]{{sin}\left({x}\right)−{tan}^{\mathrm{2}} \left({x}\right)}} \\ $$
Commented by cortano1 last updated on 28/Feb/22
 lim_(x→0^+ ) ((x−(√x))/( ((sin x−tan^2 x))^(1/3) ))
$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{x}−\sqrt{\mathrm{x}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{sin}\:\mathrm{x}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}} \\ $$
Commented by mathocean1 last updated on 28/Feb/22
yeah
$${yeah} \\ $$
Answered by bobhans last updated on 28/Feb/22
  lim_(x→0^+ )  ((x−(√x))/( ((x−x^2 ))^(1/3) )) = −lim_(x→0^+ ) ((x−(√x))/( ((x^2 −x))^(1/3) ))   = −lim_(x→0^+ ) ((x^2 −x)/(x^2 −x)) .lim_(x→0^+ ) ((((x^2 −x)^2 ))^(1/3) /(x+(√x)))  =−lim_(x→0^+ ) ((x(x)^(1/3)  ((((1−x^(−1) )^2 ))^(1/3) ))/( (√x) ((√x)+1)))  = −lim_(x→0^+ ) (((x)^(1/3)  (((1−x^(−1) )^2 ))^(1/3) )/( (√x)+1)) = 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{x}−\sqrt{\mathrm{x}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{x}^{\mathrm{2}} }}\:=\:−\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{x}−\sqrt{\mathrm{x}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} −\mathrm{x}}} \\ $$$$\:=\:−\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{x}}{\mathrm{x}^{\mathrm{2}} −\mathrm{x}}\:.\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}\right)^{\mathrm{2}} }}{\mathrm{x}+\sqrt{\mathrm{x}}} \\ $$$$=−\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{x}\sqrt[{\mathrm{3}}]{\mathrm{x}}\:\left(\sqrt[{\mathrm{3}}]{\left(\mathrm{1}−\mathrm{x}^{−\mathrm{1}} \right)^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{x}}\:\left(\sqrt{\mathrm{x}}+\mathrm{1}\right)} \\ $$$$=\:−\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{x}}\:\sqrt[{\mathrm{3}}]{\left(\mathrm{1}−\mathrm{x}^{−\mathrm{1}} \right)^{\mathrm{2}} }}{\:\sqrt{\mathrm{x}}+\mathrm{1}}\:=\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *