Menu Close

calculate-lim-x-1-1-1-x-arcsinx-pi-2-




Question Number 33594 by abdo imad last updated on 19/Apr/18
calculate  lim_(x→1^− )         (1/((1−x)^α ))(arcsinx −(π/2)) .
calculatelimx11(1x)α(arcsinxπ2).
Commented by abdo imad last updated on 24/Apr/18
let use the ch. 1−x =t ⇒lim_(x→1^− )     (1/((1−x)^α ))( arcsinx −(π/2))  =lim_(t→0^+ )    (1/t^α )(arcsin(1−t) −(π/2))  =lim_(t→0^+ )    ((arcsin(1−t)−(π/2))/t^α )  let use hospital theorem  u(t) =arcsin(1−t)−(π/2) and v(t)= t^α   u^′ (t) =((−1)/( (√(1−(1−t)^2 ))))  and v^′ (t) =α t^(α−1) ⇒  u^′ (t) =((−1)/( (√(1−t^2  +2t −1)))) =−(1/( (√(2t −t^2 )))) if α>1 lim α t^(α−1)  =0^+   lim_(t→0^+ )    u^′ (t) =−∞ ⇒lim _(t→o^+ )    ((arcsin(1−t)−(π/2))/t^α ) =−∞  if 0<α<1 we do the ch.α =(1/λ) with λ>1⇒  lim_(t→0^+ )     ((arcsin(1−t)−(π/2))/t^α ) =lim_(t→0^+ )   ((arcsin(1−t)−(π/2))/t^(1/λ) )  =lim_(t→0^+ )       ((−1)/((1/λ)t^((1/λ)−1) (√(2t−t^2 )))) =lim_(t→0^+ )    ((−λ)/( (√(2t−t^2 )))) t^(1−(1/λ))  for  that we must calculate u^(′′) (t) and v^(′′) (t)...be continued....
letusethech.1x=tlimx11(1x)α(arcsinxπ2)=limt0+1tα(arcsin(1t)π2)=limt0+arcsin(1t)π2tαletusehospitaltheoremu(t)=arcsin(1t)π2andv(t)=tαu(t)=11(1t)2andv(t)=αtα1u(t)=11t2+2t1=12tt2ifα>1limαtα1=0+limt0+u(t)=limto+arcsin(1t)π2tα=if0<α<1wedothech.α=1λwithλ>1limt0+arcsin(1t)π2tα=limt0+arcsin(1t)π2t1λ=limt0+11λt1λ12tt2=limt0+λ2tt2t11λforthatwemustcalculateu(t)andv(t)becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *