Question Number 33594 by abdo imad last updated on 19/Apr/18
$${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{1}^{−} } \:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\alpha} }\left({arcsinx}\:−\frac{\pi}{\mathrm{2}}\right)\:. \\ $$
Commented by abdo imad last updated on 24/Apr/18
$${let}\:{use}\:{the}\:{ch}.\:\mathrm{1}−{x}\:={t}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{1}^{−} } \:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\alpha} }\left(\:{arcsinx}\:−\frac{\pi}{\mathrm{2}}\right) \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\:\frac{\mathrm{1}}{{t}^{\alpha} }\left({arcsin}\left(\mathrm{1}−{t}\right)\:−\frac{\pi}{\mathrm{2}}\right) \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\:\frac{{arcsin}\left(\mathrm{1}−{t}\right)−\frac{\pi}{\mathrm{2}}}{{t}^{\alpha} }\:\:{let}\:{use}\:{hospital}\:{theorem} \\ $$$${u}\left({t}\right)\:={arcsin}\left(\mathrm{1}−{t}\right)−\frac{\pi}{\mathrm{2}}\:{and}\:{v}\left({t}\right)=\:{t}^{\alpha} \\ $$$${u}^{'} \left({t}\right)\:=\frac{−\mathrm{1}}{\:\sqrt{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }}\:\:{and}\:{v}^{'} \left({t}\right)\:=\alpha\:{t}^{\alpha−\mathrm{1}} \Rightarrow \\ $$$${u}^{'} \left({t}\right)\:=\frac{−\mathrm{1}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} \:+\mathrm{2}{t}\:−\mathrm{1}}}\:=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{t}\:−{t}^{\mathrm{2}} }}\:{if}\:\alpha>\mathrm{1}\:{lim}\:\alpha\:{t}^{\alpha−\mathrm{1}} \:=\mathrm{0}^{+} \\ $$$${lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\:{u}^{'} \left({t}\right)\:=−\infty\:\Rightarrow{lim}\:_{{t}\rightarrow{o}^{+} } \:\:\:\frac{{arcsin}\left(\mathrm{1}−{t}\right)−\frac{\pi}{\mathrm{2}}}{{t}^{\alpha} }\:=−\infty \\ $$$${if}\:\mathrm{0}<\alpha<\mathrm{1}\:{we}\:{do}\:{the}\:{ch}.\alpha\:=\frac{\mathrm{1}}{\lambda}\:{with}\:\lambda>\mathrm{1}\Rightarrow \\ $$$${lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\:\:\frac{{arcsin}\left(\mathrm{1}−{t}\right)−\frac{\pi}{\mathrm{2}}}{{t}^{\alpha} }\:={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\frac{{arcsin}\left(\mathrm{1}−{t}\right)−\frac{\pi}{\mathrm{2}}}{{t}^{\frac{\mathrm{1}}{\lambda}} } \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\:\:\:\:\frac{−\mathrm{1}}{\frac{\mathrm{1}}{\lambda}{t}^{\frac{\mathrm{1}}{\lambda}−\mathrm{1}} \sqrt{\mathrm{2}{t}−{t}^{\mathrm{2}} }}\:={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\:\frac{−\lambda}{\:\sqrt{\mathrm{2}{t}−{t}^{\mathrm{2}} }}\:{t}^{\mathrm{1}−\frac{\mathrm{1}}{\lambda}} \:{for} \\ $$$${that}\:{we}\:{must}\:{calculate}\:{u}^{''} \left({t}\right)\:{and}\:{v}^{''} \left({t}\right)…{be}\:{continued}…. \\ $$