Menu Close

calculate-lim-x-1-1-cos-pix-x-2-sin-pix-2-




Question Number 39635 by math khazana by abdo last updated on 09/Jul/18
calculate  lim_(x→1)  ((1+cos(πx))/(x^2 − sin(((πx)/2))))
calculatelimx11+cos(πx)x2sin(πx2)
Commented by abdo mathsup 649 cc last updated on 09/Jul/18
changement  x−1=t give t→0 whenx→1 and  ((1+cos(πx))/(x^2 −sin(((πx)/2)))) = ((1+cos(π(1+t)))/((1+t^ )^2  −sin(((π(1+t))/2))))  =((1−cost)/(1+t^2  +2t  −cos(((πt)/2))))=A(t) but  1−cost ∼ (t^2 /2)  and 1−cos(((πt)/2)) ∼ ((π^2 t^2 )/8) (t→0)⇒  A(t) ∼((t^2 /2)/(t^2  +2t +((π^2 t^2 )/8))) =  (t/(2(t+2 +((π^2 t)/8)))) _(t→0) →0  ⇒lim_(x→1)    ((1+cos(πx))/(x^2  −sin(((πx)/2)))) =0
changementx1=tgivet0whenx1and1+cos(πx)x2sin(πx2)=1+cos(π(1+t))(1+t)2sin(π(1+t)2)=1cost1+t2+2tcos(πt2)=A(t)but1costt22and1cos(πt2)π2t28(t0)A(t)t22t2+2t+π2t28=t2(t+2+π2t8)t00limx11+cos(πx)x2sin(πx2)=0
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Jul/18
t=1−x  lim_(t→0) ((1+cos{Π(1−t)})/((1−t)^2 −sin{((Π(1−t))/2)}))  lim_(t→0) ((1−cos(Πt))/((1−t)^2 −cos((Πt)/2)))  lim_(t→0)  ((2sin^2 ((Πt)/2))/(1−2t+t^2 −cos((Πt)/2)))  lim_(t→0)  ((2sin^2 ((Πt)/2))/(2sin^2 ((Πt)/2)+t^2 −2t))  lim_(t→0) ((2×((sin(((Πt)/2))×sin(((Πt)/2)))/(((Πt)/2)×((Πt)/2)))×(Π^2 /4))/(2×((sin(((Πt)/2))×sin(((Πt)/2)))/(((Πt)/2)×((Πt)/2)))×(Π^2 /4)+1−(2/t)))  lim_(t→0) ((Π^2 /2)/((Π^2 /2)+1−∞))=0  pls check...
t=1xlimt01+cos{Π(1t)}(1t)2sin{Π(1t)2}limt01cos(Πt)(1t)2cosΠt2limt02sin2Πt212t+t2cosΠt2limt02sin2Πt22sin2Πt2+t22tlimt02×sin(Πt2)×sin(Πt2)Πt2×Πt2×242×sin(Πt2)×sin(Πt2)Πt2×Πt2×24+12tlimt02222+1=0plscheck

Leave a Reply

Your email address will not be published. Required fields are marked *