Question Number 79103 by mathmax by abdo last updated on 22/Jan/20
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{{nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\:{without}\:{hospital}\:{rule}. \\ $$
Commented by mathmax by abdo last updated on 24/Jan/20
$${let}\:{f}\left({x}\right)=\frac{{nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:{changement}\:{x}−\mathrm{1}={t}\:{give} \\ $$$${f}\left({x}\right)={g}\left({t}\right)\:=\frac{{n}\left(\mathrm{1}+{t}\right)^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right)\left(\mathrm{1}+{t}\right)^{{n}} \:+\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$${x}\rightarrow\mathrm{1}\:\Rightarrow\:{t}\rightarrow\mathrm{0}\:\:\:\:{we}\:{know}\:\:\left(\mathrm{1}+{t}\right)^{\alpha} \:\sim\mathrm{1}+\alpha{t}\:+\frac{\alpha\left(\alpha−\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{2}} \:\Rightarrow \\ $$$$\left(\mathrm{1}+{t}\right)^{{n}+\mathrm{1}} \:\sim\mathrm{1}+\left({n}+\mathrm{1}\right){t}\:+\frac{\left({n}+\mathrm{1}\right){n}}{\mathrm{2}}{t}^{\mathrm{2}} \:{and} \\ $$$$\left(\mathrm{1}+{t}\right)^{{n}} \:\sim\mathrm{1}+{nt}\:+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{2}} \:\Rightarrow \\ $$$${g}\left({t}\right)\sim\frac{{n}\:+{n}\left({n}+\mathrm{1}\right){t}\:+\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)−{n}\left({n}+\mathrm{1}\right){t}−\frac{{n}\left({n}−\mathrm{1}\right)\left({n}+\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{2}} \:+\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$$\Rightarrow{g}\left({t}\right)\sim\frac{\left\{\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)}{\mathrm{2}}−\frac{{n}\left({n}−\mathrm{1}\right)\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\}{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} }\:\Rightarrow \\ $$$${g}\left({t}\right)\:\sim\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\left({n}−{n}+\mathrm{1}\right)\:\Rightarrow{lim}_{{t}\rightarrow\mathrm{0}} \:\:{g}\left({t}\right)=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} {f}\left({x}\right)=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$ \\ $$