Menu Close

calculate-lim-x-1-sin-pix-1-x-2-without-hospital-rule-




Question Number 79756 by mathmax by abdo last updated on 27/Jan/20
calculate lim_(x→1)   ((sin(πx))/(1−x^2 ))  without hospital rule
calculatelimx1sin(πx)1x2withouthospitalrule
Commented by john santu last updated on 27/Jan/20
lim_(x→1)  (((sin (π−πx))/((π−πx))))×lim_(x→1)  (((π−πx))/(1−x^2 ))  = 1× lim_(x→1)  ((π(1−x))/((1−x)(1+x)))  = (π/2)
limx1(sin(ππx)(ππx))×limx1(ππx)1x2=1×limx1π(1x)(1x)(1+x)=π2
Commented by mathmax by abdo last updated on 28/Jan/20
changement 1−x=t give   lim_(x→1)  ((sin(πx))/(1−x^2 )) =lim_(t→0)    ((sin(π(1−t)))/(1−(1−t)^2 ))  =lim_(t→0)    ((sin(πt))/(1−(t^2 −2t +1))) =lim_(t→0)    ((sin(πt))/(2t−t^2 ))  =lim_(t→0)    ((sin(πt))/(πt))×((πt)/(2t−t^2 )) =lim_(t→0)   ((sin(πt))/(πt))×lim_(t→0)   (π/(2−t))  =1×(π/2) =(π/2)
changement1x=tgivelimx1sin(πx)1x2=limt0sin(π(1t))1(1t)2=limt0sin(πt)1(t22t+1)=limt0sin(πt)2tt2=limt0sin(πt)πt×πt2tt2=limt0sin(πt)πt×limt0π2t=1×π2=π2

Leave a Reply

Your email address will not be published. Required fields are marked *