Menu Close

calculate-lim-x-1-sin-pix-1-x-2-without-hospital-rule-




Question Number 79756 by mathmax by abdo last updated on 27/Jan/20
calculate lim_(x→1)   ((sin(πx))/(1−x^2 ))  without hospital rule
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:{without}\:{hospital}\:{rule} \\ $$
Commented by john santu last updated on 27/Jan/20
lim_(x→1)  (((sin (π−πx))/((π−πx))))×lim_(x→1)  (((π−πx))/(1−x^2 ))  = 1× lim_(x→1)  ((π(1−x))/((1−x)(1+x)))  = (π/2)
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{sin}\:\left(\pi−\pi\mathrm{x}\right)}{\left(\pi−\pi\mathrm{x}\right)}\right)×\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\pi−\pi\mathrm{x}\right)}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} } \\ $$$$=\:\mathrm{1}×\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\pi\left(\mathrm{1}−\mathrm{x}\right)}{\left(\mathrm{1}−\mathrm{x}\right)\left(\mathrm{1}+\mathrm{x}\right)} \\ $$$$=\:\frac{\pi}{\mathrm{2}} \\ $$
Commented by mathmax by abdo last updated on 28/Jan/20
changement 1−x=t give   lim_(x→1)  ((sin(πx))/(1−x^2 )) =lim_(t→0)    ((sin(π(1−t)))/(1−(1−t)^2 ))  =lim_(t→0)    ((sin(πt))/(1−(t^2 −2t +1))) =lim_(t→0)    ((sin(πt))/(2t−t^2 ))  =lim_(t→0)    ((sin(πt))/(πt))×((πt)/(2t−t^2 )) =lim_(t→0)   ((sin(πt))/(πt))×lim_(t→0)   (π/(2−t))  =1×(π/2) =(π/2)
$${changement}\:\mathrm{1}−{x}={t}\:{give}\: \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }\:={lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\frac{{sin}\left(\pi\left(\mathrm{1}−{t}\right)\right)}{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{\mathrm{2}} } \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\frac{{sin}\left(\pi{t}\right)}{\mathrm{1}−\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{1}\right)}\:={lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\frac{{sin}\left(\pi{t}\right)}{\mathrm{2}{t}−{t}^{\mathrm{2}} } \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\frac{{sin}\left(\pi{t}\right)}{\pi{t}}×\frac{\pi{t}}{\mathrm{2}{t}−{t}^{\mathrm{2}} }\:={lim}_{{t}\rightarrow\mathrm{0}} \:\:\frac{{sin}\left(\pi{t}\right)}{\pi{t}}×{lim}_{{t}\rightarrow\mathrm{0}} \:\:\frac{\pi}{\mathrm{2}−{t}} \\ $$$$=\mathrm{1}×\frac{\pi}{\mathrm{2}}\:=\frac{\pi}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *