Menu Close

calculate-lim-x-1-x-1-x-2-1-dt-ln-1-t-




Question Number 97981 by abdomathmax last updated on 10/Jun/20
calculate lim_(x→1^+ )   ∫_(x−1) ^(x^2 −1)  (dt/(ln(1+t)))
calculatelimx1+x1x21dtln(1+t)
Answered by mathmax by abdo last updated on 11/Jun/20
let F(x) =∫_(x−1) ^(x^2 −1)  (dt/(ln(t+1))) cha7gement  ln(t+1)=u give t+1 =e^u   F(x) =∫_(ln(x)) ^(ln(x^2 ))  (e^u /u) du =∫_(ln(x)) ^(2ln(x))  (e^u /u) du   ∃ c ∈]ln(x),2ln(x) /  F(x) =e^c  ∫_(ln(x)) ^(2ln(x))  (du/u) =e^c  ln∣((2lnx)/(lnx))∣  (x→1^+  ⇒c→0+) ⇒lim_(x→1^+ )  F(x) =ln(2)
letF(x)=x1x21dtln(t+1)cha7gementln(t+1)=ugivet+1=euF(x)=ln(x)ln(x2)euudu=ln(x)2ln(x)euuduc]ln(x),2ln(x)/F(x)=ecln(x)2ln(x)duu=ecln2lnxlnx(x1+c0+)limx1+F(x)=ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *