Menu Close

calculate-lim-x-1-x-tan-pix-2x-3-




Question Number 40092 by maxmathsup by imad last updated on 15/Jul/18
calculate lim_(x→+∞)       (1/x) tan(((πx)/(2x+3)))
$${calculate}\:{lim}_{{x}\rightarrow+\infty} \:\:\:\:\:\:\frac{\mathrm{1}}{{x}}\:{tan}\left(\frac{\pi{x}}{\mathrm{2}{x}+\mathrm{3}}\right) \\ $$
Commented by math khazana by abdo last updated on 26/Jul/18
we have ((πx)/(2x+3)) =((πx)/(2x(1+(3/(2x))))) =(π/2) .(1/(1+(3/(2x))))  ∼(π/2)(1−(3/(2x)) +0((1/x))) (x→+∞)⇒  tan(((πx)/(2x+3))) ∼tan((π/2) −((3π)/(4x))) ∼ (1/(tan(((3π)/(4x))))) ⇒  (1/x)tan(((πx)/(2x+3))) ∼  (1/(x tan(((3π)/(4x))))) changement   ((3π)/(4x)) =t give4tx=3π  ⇒ lim_(x→+∞)  (1/(xtan(((3π)/(4x)))))  =lim_(t→0)     (1/(((3π)/(4t))tan(t))) =(4/(3π))lim_(t→0)      (1/((tant)/t)) =(4/(3π))  because lim_(t→0)     ((tant)/t) =1
$${we}\:{have}\:\frac{\pi{x}}{\mathrm{2}{x}+\mathrm{3}}\:=\frac{\pi{x}}{\mathrm{2}{x}\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}{x}}\right)}\:=\frac{\pi}{\mathrm{2}}\:.\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}{x}}} \\ $$$$\sim\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{2}{x}}\:+\mathrm{0}\left(\frac{\mathrm{1}}{{x}}\right)\right)\:\left({x}\rightarrow+\infty\right)\Rightarrow \\ $$$${tan}\left(\frac{\pi{x}}{\mathrm{2}{x}+\mathrm{3}}\right)\:\sim{tan}\left(\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{3}\pi}{\mathrm{4}{x}}\right)\:\sim\:\frac{\mathrm{1}}{{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{4}{x}}\right)}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{x}}{tan}\left(\frac{\pi{x}}{\mathrm{2}{x}+\mathrm{3}}\right)\:\sim\:\:\frac{\mathrm{1}}{{x}\:{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{4}{x}}\right)}\:{changement}\: \\ $$$$\frac{\mathrm{3}\pi}{\mathrm{4}{x}}\:={t}\:{give}\mathrm{4}{tx}=\mathrm{3}\pi\:\:\Rightarrow\:{lim}_{{x}\rightarrow+\infty} \:\frac{\mathrm{1}}{{xtan}\left(\frac{\mathrm{3}\pi}{\mathrm{4}{x}}\right)} \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\:\frac{\mathrm{1}}{\frac{\mathrm{3}\pi}{\mathrm{4}{t}}{tan}\left({t}\right)}\:=\frac{\mathrm{4}}{\mathrm{3}\pi}{lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{\mathrm{1}}{\frac{{tant}}{{t}}}\:=\frac{\mathrm{4}}{\mathrm{3}\pi} \\ $$$${because}\:{lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\:\frac{{tant}}{{t}}\:=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *