Menu Close

calculate-lim-x-1-x-tan-pix-2x-3-




Question Number 40092 by maxmathsup by imad last updated on 15/Jul/18
calculate lim_(x→+∞)       (1/x) tan(((πx)/(2x+3)))
calculatelimx+1xtan(πx2x+3)
Commented by math khazana by abdo last updated on 26/Jul/18
we have ((πx)/(2x+3)) =((πx)/(2x(1+(3/(2x))))) =(π/2) .(1/(1+(3/(2x))))  ∼(π/2)(1−(3/(2x)) +0((1/x))) (x→+∞)⇒  tan(((πx)/(2x+3))) ∼tan((π/2) −((3π)/(4x))) ∼ (1/(tan(((3π)/(4x))))) ⇒  (1/x)tan(((πx)/(2x+3))) ∼  (1/(x tan(((3π)/(4x))))) changement   ((3π)/(4x)) =t give4tx=3π  ⇒ lim_(x→+∞)  (1/(xtan(((3π)/(4x)))))  =lim_(t→0)     (1/(((3π)/(4t))tan(t))) =(4/(3π))lim_(t→0)      (1/((tant)/t)) =(4/(3π))  because lim_(t→0)     ((tant)/t) =1
wehaveπx2x+3=πx2x(1+32x)=π2.11+32xπ2(132x+0(1x))(x+)tan(πx2x+3)tan(π23π4x)1tan(3π4x)1xtan(πx2x+3)1xtan(3π4x)changement3π4x=tgive4tx=3πlimx+1xtan(3π4x)=limt013π4ttan(t)=43πlimt01tantt=43πbecauselimt0tantt=1

Leave a Reply

Your email address will not be published. Required fields are marked *