Menu Close

calculate-lim-x-1-x-x-3-sh-xt-2-sin-xt-dt-




Question Number 78621 by mathmax by abdo last updated on 19/Jan/20
calculate lim_(x→1)     ∫_x ^x^3    ((sh(xt^2 ))/(sin(xt)))dt
calculatelimx1xx3sh(xt2)sin(xt)dt
Commented by mathmax by abdo last updated on 22/Jan/20
let f(x)=∫_x ^x^3   ((sh(xt^2 ))/(sin(xt)))dt ⇒f(x)=_(xt=u)  ∫_x^2  ^x^4    ((sh(x(u^2 /x^2 )))/(sin(u)))(du/x)  =(1/x) ∫_x^2  ^x^4     ((sh((1/x)u^2 ))/(sinu))du   ∃ c_x  ∈]x^2 ,x^4 [ /f(x)=(1/x)sh((c_x ^2 /x))∫_x^2  ^x^4    (du/(sinu))  changement tan((u/2))=z give  ∫_x^2  ^x^4   (du/(sinu)) =∫_(tan((x^2 /2))) ^(tan((x^4 /2)))  (1/((2z)/(1+z^2 )))((2dz)/(1+z^2 )) =∫_(tan((x^2 /2))) ^(tan((x^4 /2)))  (dz/z) =ln∣tan((x^4 /2))∣−ln∣tan((x^2 /2))∣  ⇒lim_(x→1) f(x) =lim_(x→1)  (1/x)sh((c_x ^2 /x))ln∣((tan((x^4 /2)))/(tan((x^2 /2))))∣  =sh(1)×ln(1) =0
letf(x)=xx3sh(xt2)sin(xt)dtf(x)=xt=ux2x4sh(xu2x2)sin(u)dux=1xx2x4sh(1xu2)sinuducx]x2,x4[/f(x)=1xsh(cx2x)x2x4dusinuchangementtan(u2)=zgivex2x4dusinu=tan(x22)tan(x42)12z1+z22dz1+z2=tan(x22)tan(x42)dzz=lntan(x42)lntan(x22)limx1f(x)=limx11xsh(cx2x)lntan(x42)tan(x22)=sh(1)×ln(1)=0

Leave a Reply

Your email address will not be published. Required fields are marked *