Menu Close

calculate-lim-x-pi-pi-2-x-dx-1-sinx-cosx-




Question Number 64448 by mathmax by abdo last updated on 18/Jul/19
calculate lim_(x→π)   ∫_(π/2) ^x    (dx/(1+sinx−cosx))
calculatelimxππ2xdx1+sinxcosx
Commented by mathmax by abdo last updated on 19/Jul/19
let A(x) =∫_(π/2) ^x   (dt/(1+sint−cost)) changement tan((t/2))=u vive  A(x) =∫_1 ^(tan((x/2)))    ((2du)/((1+u^2 )(1+((2u)/(1+u^2 ))−((1−u^2 )/(1+u^2 )))))  =∫_1 ^(tan((x/2)))  ((2du)/(1+u^2  +2u−1+u^2 )) =∫_1 ^(tan((x/2)))   ((2du)/(2u^2 +2u)) =∫_1 ^(tan((x/2)))  (du/(u(u+1)))  =∫_1 ^(tan((x/2))) {(1/u)−(1/(u+1))}du =[ln∣(u/(u+1))∣]_1 ^(tan((x/2)))  =ln∣((tan((x/2)))/(tan((x/2))+1))∣−ln((1/2))  ⇒lim_(x→π)  A(x) =0+ln(2) =ln(2).
letA(x)=π2xdt1+sintcostchangementtan(t2)=uviveA(x)=1tan(x2)2du(1+u2)(1+2u1+u21u21+u2)=1tan(x2)2du1+u2+2u1+u2=1tan(x2)2du2u2+2u=1tan(x2)duu(u+1)=1tan(x2){1u1u+1}du=[lnuu+1]1tan(x2)=lntan(x2)tan(x2)+1ln(12)limxπA(x)=0+ln(2)=ln(2).
Answered by Tanmay chaudhury last updated on 18/Jul/19
∫(dx/(2sin(x/2)cos(x/2)+2sin^2 (x/2)))  ∫((sec^2 (x/2)dx)/(2tan(x/2)+2tan^2 (x/2)))dx  ∫((d(tan(x/2)))/(tan(x/2)(1+tan(x/2))))  ∫((d(tan(x/2)))/(tan(x/2)))−∫((d(tan(x/2)))/(1+tan(x/2)))  ∣ln(((tan(x/2))/(1+tan(x/2))))∣_(π/2) ^π   ln1−ln((1/(1+1)))  =ln2
dx2sinx2cosx2+2sin2x2sec2x2dx2tanx2+2tan2x2dxd(tanx2)tanx2(1+tanx2)d(tanx2)tanx2d(tanx2)1+tanx2ln(tanx21+tanx2)π2πln1ln(11+1)=ln2

Leave a Reply

Your email address will not be published. Required fields are marked *