Menu Close

calculate-ln-1-x-2-1-x-2-dx-




Question Number 59277 by Mr X pcx last updated on 07/May/19
calculate ∫_(−∞) ^(+∞)  ((ln(1+x^2 ))/(1+x^2 )) dx
calculate+ln(1+x2)1+x2dx
Commented by maxmathsup by imad last updated on 18/May/19
let A =∫_(−∞) ^(+∞)  ((ln(1+x^2 ))/(1+x^2 ))dx   changement x=tanθ give  A =∫_(−(π/2)) ^(π/2)   ((ln(1+tan^2 θ))/(1+tan^2 θ))(1+tan^2 θ)dθ =∫_(−(π/2)) ^(π/2) ln((1/(cos^2 θ)))dθ =−2 ∫_(−(π/2)) ^(π/2)  ln(cosθ)dθ  =−4 ∫_0 ^(π/2)  ln(cosθ)dθ   let find ∫_0 ^(π/2) ln(cosθ)dθ =I  let use his friend J=∫_0 ^(π/2) ln(sinθ)dθ  we have J =_(θ=(π/2)−t)    −∫_0 ^(π/2) ln(cost)(−dt) =I  also  I +J =2I =∫_0 ^(π/2) ln(cosθ.sinθ)dθ =∫_0 ^(π/2) ln(((sin(2θ))/2))dθ=∫_0 ^(π/2)  ln(sin(2θ))dθ  −(π/2)ln(2)  ∫_0 ^(π/2) ln(sin(2θ))dθ =_(2θ=t)  (1/2)∫_0 ^π ln(sint) dt =(1/2){ ∫_0 ^(π/2) ln(sint)dt +∫_(π/2) ^π ln(sint)dt}  =(1/2) I +(1/2) ∫_0 ^(π/2) ln(cosα)dα                    (t=(π/2)+α)  =(1/2)I +(1/2)I =I ⇒ 2I =−(π/2)ln(2) +I  ⇒ I =−(π/2)ln(2) ⇒A =−4(−(π/2))ln(2)  ⇒ A = 2πln(2) .
letA=+ln(1+x2)1+x2dxchangementx=tanθgiveA=π2π2ln(1+tan2θ)1+tan2θ(1+tan2θ)dθ=π2π2ln(1cos2θ)dθ=2π2π2ln(cosθ)dθ=40π2ln(cosθ)dθletfind0π2ln(cosθ)dθ=IletusehisfriendJ=0π2ln(sinθ)dθwehaveJ=θ=π2t0π2ln(cost)(dt)=IalsoI+J=2I=0π2ln(cosθ.sinθ)dθ=0π2ln(sin(2θ)2)dθ=0π2ln(sin(2θ))dθπ2ln(2)0π2ln(sin(2θ))dθ=2θ=t120πln(sint)dt=12{0π2ln(sint)dt+π2πln(sint)dt}=12I+120π2ln(cosα)dα(t=π2+α)=12I+12I=I2I=π2ln(2)+II=π2ln(2)A=4(π2)ln(2)A=2πln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *