Menu Close

calculate-n-0-1-2n-1-e-4n-2-where-e-is-euler-number-solution-n-0-1-e-4n-2-0-1-x-2n-dx-




Question Number 176566 by mnjuly1970 last updated on 21/Sep/22
−−−−    calculate:    Φ = Σ_(n=0) ^( ∞)  (( 1)/((2n+1 ).e^( 4n+2) )) = ?            where  ”  e  ”  is  euler number.        ≺   solution  ≻        Φ = Σ_(n=0) ^∞  (1/e^( 4n+2) ) ∫_0 ^( 1) x^( 2n) dx            = (1/e^( 2) ) ∫_0 ^( 1) Σ_(n=0) ^∞ (((  x^2 )/e^( 4) ) )^( n) dx             = (1/e^( 2) ) ∫_0 ^( 1) (( 1)/(1− ((x/e^( 2) ) )^( 2) )) dx=(1/(2e^( 2) )) ∫_0 ^( 1) (1/(1−(x/e^( 2) ))) +(1/(1+(x/e^( 2) )))dx            =  (1/2)  ln (  ((1+(1/e^( 2) ))/(1−(1/e^( 2) )))  )    = tanh^( −1) ((( 1)/e^( 2) ) )            ∴      Φ = coth^( −1) ( e^( 2) )      ■ m.n
calculate:Φ=n=01(2n+1).e4n+2=?whereeiseulernumber.solutionΦ=n=01e4n+201x2ndx=1e201n=0(x2e4)ndx=1e20111(xe2)2dx=12e20111xe2+11+xe2dx=12ln(1+1e211e2)=tanh1(1e2)Φ=coth1(e2)◼m.n

Leave a Reply

Your email address will not be published. Required fields are marked *