Menu Close

calculate-n-0-1-2n-1-e-4n-2-where-e-is-euler-number-solution-n-0-1-e-4n-2-0-1-x-2n-dx-




Question Number 176566 by mnjuly1970 last updated on 21/Sep/22
−−−−    calculate:    Φ = Σ_(n=0) ^( ∞)  (( 1)/((2n+1 ).e^( 4n+2) )) = ?            where  ”  e  ”  is  euler number.        ≺   solution  ≻        Φ = Σ_(n=0) ^∞  (1/e^( 4n+2) ) ∫_0 ^( 1) x^( 2n) dx            = (1/e^( 2) ) ∫_0 ^( 1) Σ_(n=0) ^∞ (((  x^2 )/e^( 4) ) )^( n) dx             = (1/e^( 2) ) ∫_0 ^( 1) (( 1)/(1− ((x/e^( 2) ) )^( 2) )) dx=(1/(2e^( 2) )) ∫_0 ^( 1) (1/(1−(x/e^( 2) ))) +(1/(1+(x/e^( 2) )))dx            =  (1/2)  ln (  ((1+(1/e^( 2) ))/(1−(1/e^( 2) )))  )    = tanh^( −1) ((( 1)/e^( 2) ) )            ∴      Φ = coth^( −1) ( e^( 2) )      ■ m.n
$$−−−− \\ $$$$\:\:{calculate}:\:\:\:\:\Phi\:=\:\underset{{n}=\mathrm{0}} {\overset{\:\infty} {\sum}}\:\frac{\:\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\:\right).{e}^{\:\mathrm{4}{n}+\mathrm{2}} }\:=\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:{where}\:\:''\:\:{e}\:\:''\:\:{is}\:\:{euler}\:{number}. \\ $$$$\:\:\:\:\:\:\prec\:\:\:{solution}\:\:\succ \\ $$$$\:\:\:\:\:\:\Phi\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{e}^{\:\mathrm{4}{n}+\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:\mathrm{2}{n}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{{e}^{\:\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\:\:{x}^{\mathrm{2}} }{{e}^{\:\mathrm{4}} }\:\right)^{\:{n}} {dx}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{{e}^{\:\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{1}}{\mathrm{1}−\:\left(\frac{{x}}{{e}^{\:\mathrm{2}} }\:\right)^{\:\mathrm{2}} }\:{dx}=\frac{\mathrm{1}}{\mathrm{2}{e}^{\:\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}−\frac{{x}}{{e}^{\:\mathrm{2}} }}\:+\frac{\mathrm{1}}{\mathrm{1}+\frac{{x}}{{e}^{\:\mathrm{2}} }}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\:{ln}\:\left(\:\:\frac{\mathrm{1}+\frac{\mathrm{1}}{{e}^{\:\mathrm{2}} }}{\mathrm{1}−\frac{\mathrm{1}}{{e}^{\:\mathrm{2}} }}\:\:\right)\:\:\:\:=\:{tanh}^{\:−\mathrm{1}} \left(\frac{\:\mathrm{1}}{{e}^{\:\mathrm{2}} }\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\:\Phi\:=\:{coth}^{\:−\mathrm{1}} \left(\:{e}^{\:\mathrm{2}} \right)\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\: \\ $$$$\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *