Menu Close

calculate-n-0-1-3n-




Question Number 166660 by mnjuly1970 last updated on 24/Feb/22
     calculate      Ω = Σ_(n=0) ^∞ (1/((3n)!))  = ?
calculateΩ=n=01(3n)!=?
Answered by amin96 last updated on 24/Feb/22
e^x =Σ_(n=0) ^∞ (x^n /(n!))_(1)     e^(xk) =Σ_(n=0) ^∞ (((xk)^n )/(n!)) _(2)   e^(xk^2 ) =Σ_(n=0) ^∞ ((x^n k^(2n) )/(n!))_(3)   (1)+(2)+(3)=3×(Σ_(n=0) ^∞ (x^(3n) /((3n)!)))_(S)   S=((e^x +e^(kx) +e^(k^2 x) )/3)    k=((−1+i(√3))/2)    k^2 =((−1−i(√3))/2)  S=(1/3)×(e^x +e^(x×((−1+i(√3))/2)) +e^(x×((−1−i(√3))/2)) )=  =(1/3)×(e^x +e^(−(x/2)) (e^((xi(√3))/2) +e^(−((xi(√3))/2)) ))=(1/3)×(e^x +2e^(−(x/2)) cos(((x(√3))/2)))  x=1  S=Σ_(n=0) ^∞ (1/((3n)!))=(1/3)×(e+2e^(−(1/2)) cos(((√3)/2))) by MATH.AMIN
ex=n=0xnn!1exk=n=0(xk)nn!2exk2=n=0xnk2nn!3(1)+(2)+(3)=3×(n=0x3n(3n)!)SS=ex+ekx+ek2x3k=1+i32k2=1i32S=13×(ex+ex×1+i32+ex×1i32)==13×(ex+ex2(exi32+exi32))=13×(ex+2ex2cos(x32))x=1S=n=01(3n)!=13×(e+2e12cos(32))byMATH.AMIN
Commented by mnjuly1970 last updated on 25/Feb/22
   bravo sir
bravosir

Leave a Reply

Your email address will not be published. Required fields are marked *