Menu Close

calculate-n-0-1-n-2-4-




Question Number 144500 by mathmax by abdo last updated on 25/Jun/21
calculate Σ_(n=0) ^∞  (1/(n^2  +4))
$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} \:+\mathrm{4}} \\ $$
Answered by Dwaipayan Shikari last updated on 26/Jun/21
Σ_(n=1) ^∞ (1/(n^2 +a^2 ))=(π/(2a))coth((π/a))−(1/(2a^2 ))  Σ_(n=1) ^∞ (1/(n^2 +4))=(π/4)coth((π/2))−(1/8)  Σ_(n=0) ^∞ (1/(n^2 +4))=(π/4)coth ((π/2))+(7/8)
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{a}^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}{a}}{coth}\left(\frac{\pi}{{a}}\right)−\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{4}}=\frac{\pi}{\mathrm{4}}{coth}\left(\frac{\pi}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{4}}=\frac{\pi}{\mathrm{4}}\mathrm{coth}\:\left(\frac{\pi}{\mathrm{2}}\right)+\frac{\mathrm{7}}{\mathrm{8}} \\ $$
Answered by ArielVyny last updated on 25/Jun/21
we have f(t)=(1/(t^2 +4)) positiv and decreasing  in [0.∞] then  ∫_0 ^∞ (1/(t^2 +4))dt=∫_0 ^∞ (1/(4(1+(t^2 /4))))dt=(1/4)∫_0 ^∞ (1/(1+(t^2 /4)))dt  u=(t/4) du=(1/4)dt  ∫_0 ^∞ (1/(1+u^2 ))du=[arctg]_0 ^∞ =(π/2)
$${we}\:{have}\:{f}\left({t}\right)=\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{4}}\:{positiv}\:{and}\:{decreasing} \\ $$$${in}\:\left[\mathrm{0}.\infty\right]\:{then} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{4}}{dt}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{1}+\frac{{t}^{\mathrm{2}} }{\mathrm{4}}\right)}{dt}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+\frac{{t}^{\mathrm{2}} }{\mathrm{4}}}{dt} \\ $$$${u}=\frac{{t}}{\mathrm{4}}\:{du}=\frac{\mathrm{1}}{\mathrm{4}}{dt} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }{du}=\left[{arctg}\right]_{\mathrm{0}} ^{\infty} =\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 26/Jun/21
the Q is a sum not integral sir viny...
$$\mathrm{the}\:\mathrm{Q}\:\mathrm{is}\:\mathrm{a}\:\mathrm{sum}\:\mathrm{not}\:\mathrm{integral}\:\mathrm{sir}\:\mathrm{viny}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *