Menu Close

calculate-n-0-1-n-2-4-




Question Number 144500 by mathmax by abdo last updated on 25/Jun/21
calculate Σ_(n=0) ^∞  (1/(n^2  +4))
calculaten=01n2+4
Answered by Dwaipayan Shikari last updated on 26/Jun/21
Σ_(n=1) ^∞ (1/(n^2 +a^2 ))=(π/(2a))coth((π/a))−(1/(2a^2 ))  Σ_(n=1) ^∞ (1/(n^2 +4))=(π/4)coth((π/2))−(1/8)  Σ_(n=0) ^∞ (1/(n^2 +4))=(π/4)coth ((π/2))+(7/8)
n=11n2+a2=π2acoth(πa)12a2n=11n2+4=π4coth(π2)18n=01n2+4=π4coth(π2)+78
Answered by ArielVyny last updated on 25/Jun/21
we have f(t)=(1/(t^2 +4)) positiv and decreasing  in [0.∞] then  ∫_0 ^∞ (1/(t^2 +4))dt=∫_0 ^∞ (1/(4(1+(t^2 /4))))dt=(1/4)∫_0 ^∞ (1/(1+(t^2 /4)))dt  u=(t/4) du=(1/4)dt  ∫_0 ^∞ (1/(1+u^2 ))du=[arctg]_0 ^∞ =(π/2)
wehavef(t)=1t2+4positivanddecreasingin[0.]then01t2+4dt=014(1+t24)dt=14011+t24dtu=t4du=14dt011+u2du=[arctg]0=π2
Commented by mathmax by abdo last updated on 26/Jun/21
the Q is a sum not integral sir viny...
theQisasumnotintegralsirviny

Leave a Reply

Your email address will not be published. Required fields are marked *