calculate-n-0-1-n-4n-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 95215 by mathmax by abdo last updated on 24/May/20 calculate∑n=0∞(−1)n4n+1 Answered by mathmax by abdo last updated on 25/May/20 lets(x)=∑n=0∞(−1)n4n+1x4n+1with∣x∣⩽1andx≠−1s′(x)=∑n=0∞(−1)nx4n=∑n=0∞(−x4)n=11+x4⇒s(x)=∫0xdtt4+1+cs(0)=0=c⇒s(x)=∫0xdtt4+1and∑n=0∞(−1)n4n+1=∫01dtt4+1=∫011t2t2+1t2dt=12∫011+1t2−1+1t2t2+1t2dt=12∫011+1t2t2+1t2dt−12∫011−1t2t2+1t2dt=12∫011+1t2(t−1t)2+2dt(→t−1t=u)−12∫011−1t2(t+1t)2−2dt(→t+1t=v)=12∫−∞0duu2+2−12∫+∞2dvv2−2wehave∫−∞0duu2+2=u=2α∫−∞02dα2(1+α2)=12[arctanα]−∞0=12(π2)=π22and∫∞2dvv2−2=−∫2∞dv(v−2)(v+2)=−122∫2+∞(1v−2−1v+2)dv=−122[ln∣v−2v+2∣]2+∞=−122(−ln(2−222))=122ln(12−12)⇒∑n=0∞(−1)n4n+1=π42−142ln(12−12) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-by-Laplace-transform-y-5y-2y-x-2-cosx-with-y-o-1-and-y-0-2-Next Next post: calculste-n-0-n-2n-1-2-n-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.