Menu Close

calculate-n-0-1-n-4n-1-




Question Number 95215 by mathmax by abdo last updated on 24/May/20
calculate Σ_(n=0) ^∞  (((−1)^n )/(4n+1))
calculaten=0(1)n4n+1
Answered by mathmax by abdo last updated on 25/May/20
let s(x) =Σ_(n=0) ^∞  (((−1)^n )/(4n+1))x^(4n+1)   with ∣x∣ ≤1 and x≠−1  s^′ (x) =Σ_(n=0) ^∞  (−1)^n  x^(4n)  =Σ_(n=0) ^∞ (−x^4 )^n  =(1/(1+x^4 )) ⇒  s(x) =∫_0 ^x  (dt/(t^4  +1)) +c    s(0) =0 =c ⇒s(x) =∫_0 ^x  (dt/(t^4  +1)) and  Σ_(n=0) ^∞  (((−1)^n )/(4n+1)) =∫_0 ^1    (dt/(t^4  +1)) =∫_0 ^1    ((1/t^2 )/(t^2  +(1/t^2 )))dt  =(1/2)∫_0 ^1  ((1+(1/t^2 )−1+(1/t^2 ))/(t^2  +(1/t^2 )))dt =(1/2)∫_0 ^1  ((1+(1/t^2 ))/(t^2  +(1/t^2 )))dt−(1/2)∫_0 ^1  ((1−(1/t^2 ))/(t^2  +(1/t^2 )))dt  =(1/2) ∫_0 ^1  ((1+(1/t^2 ))/((t−(1/t))^2 +2))dt(→t−(1/t)=u)−(1/2) ∫_0 ^1   ((1−(1/t^2 ))/((t+(1/t))^2 −2))dt(→t+(1/t)=v)  =(1/2) ∫_(−∞) ^0  (du/(u^2  +2)) −(1/2) ∫_(+∞) ^2  (dv/(v^2 −2))  we have  ∫_(−∞) ^0  (du/(u^2  +2)) =_(u =(√2)α)    ∫_(−∞) ^0  (((√2)dα)/(2(1+α^2 ))) =(1/( (√2))) [arctanα]_(−∞) ^0   =(1/( (√2)))((π/2)) =(π/(2(√2))) and  ∫_∞ ^2  (dv/(v^2 −2)) =−∫_2 ^∞  (dv/((v−(√2))(v+(√2))))  =−(1/(2(√2)))∫_2 ^(+∞) ((1/(v−(√2)))−(1/(v+(√2))))dv =−(1/(2(√2)))[ln∣((v−(√2))/(v+(√2)))∣]_2 ^(+∞)   =−(1/(2(√2)))(−ln(((2−(√2))/(2(√2))))) =(1/(2(√2)))ln((1/( (√2)))−(1/2)) ⇒  Σ_(n=0) ^∞  (((−1)^n )/(4n+1)) =(π/(4(√2))) −(1/(4(√2)))ln((1/( (√2)))−(1/2))
lets(x)=n=0(1)n4n+1x4n+1withx1andx1s(x)=n=0(1)nx4n=n=0(x4)n=11+x4s(x)=0xdtt4+1+cs(0)=0=cs(x)=0xdtt4+1andn=0(1)n4n+1=01dtt4+1=011t2t2+1t2dt=12011+1t21+1t2t2+1t2dt=12011+1t2t2+1t2dt120111t2t2+1t2dt=12011+1t2(t1t)2+2dt(t1t=u)120111t2(t+1t)22dt(t+1t=v)=120duu2+212+2dvv22wehave0duu2+2=u=2α02dα2(1+α2)=12[arctanα]0=12(π2)=π22and2dvv22=2dv(v2)(v+2)=1222+(1v21v+2)dv=122[lnv2v+2]2+=122(ln(2222))=122ln(1212)n=0(1)n4n+1=π42142ln(1212)

Leave a Reply

Your email address will not be published. Required fields are marked *