Menu Close

calculate-n-0-1-n-4n-1-1-1-5-1-9-1-13-




Question Number 53795 by maxmathsup by imad last updated on 25/Jan/19
calculate Σ_(n=0) ^∞   (((−1)^n )/(4n+1)) =1−(1/5) +(1/9) −(1/(13)) +....
calculaten=0(1)n4n+1=115+19113+.
Commented by maxmathsup by imad last updated on 26/Jan/19
let S(x)=Σ_(n=0) ^∞   (((−1)^n )/(4n+1)) x^(4n+1)   with∣x∣<1  due to uniform convergence we have  (d/dx)S(x) =Σ_(n=0) ^∞ (−1)^n  x^(4n)  =Σ_(n=0) ^∞ (−x^4 )^n =(1/(1+x^4 )) ⇒S(x)=∫_0 ^x   (dt/(t^4  +1)) +c  c=S(0)=0 ⇒S(x)=∫_0 ^x   (dt/(t^4  +1)) and Σ_(n=0) ^∞   (((−1)^n )/(4n+1)) =S(1)=∫_0 ^1   (dt/(t^4  +1))  let decompose F(t) =(1/(t^4  +1)) ⇒ F(t)=(1/((t^2  +1)^2 −2t^2 )) =(1/((t^2 +(√2)t +1)(t^2 −(√2)t +1)))  =((at+b)/(t^2  +(√2)t +1)) +((ct +d)/(t^2 −(√2)t +1))  F(−t) =F(t) ⇒((−at +b)/(t^2 −(√2)t +1)) +((−bt +c)/(t^2  +(√2)t +1)) =F(t) ⇒c=−a and d=b ⇒  F(t) =((at +b)/(t^2  +(√2)t +1)) +((−at +b)/(t^2 −(√2)t +1))  F(0) =1 =2b ⇒b =(1/2)  F(1) =(1/2) =((a +b)/(2+(√2))) +((−a+b)/(2−(√2))) ⇒ (1/2) =(((2−(√2))(a+(1/2))+(2+(√2))(−a+(1/2)))/2) ⇒  −2(√2)a  +(1/(2 ))(4) =1 ⇒ −2(√2)a =−1 ⇒a =(1/(2(√2))) ⇒  F(t) = (((t/(2(√2)))+(1/2))/(t^2  +(√2)t +1)) +((−(t/(2(√2)))+(1/2))/(t^2 −(√2)t +1)) =(1/(2(√2))){   ((t+(√2))/(t^2  +(√2)t +1)) +((−t +(√2))/(t^2  −(√2)t +1))} ⇒  ∫_0 ^1  (dt/(t^4  +1)) =((√2)/4){ ∫_0 ^1   ((t+(√2))/(t^2  +(√2)t +1))dt − ∫_0 ^1  ((t−(√2))/(t^2  −(√2)t +1))}  =((√2)/4){ (1/2) ∫_0 ^1  ((2t +(√2) +(√2))/(t^2  +(√2)t +1)) dt −(1/2)∫_0 ^1  ((2t−(√2)−(√2))/(t^2  −(√2)t +1)) dt}  =((√2)/8){  [ln(t^2  +(√2)t +1)]_0 ^1  −[ln(t^2 −(√2)t +1)]_0 ^1   +(√2)∫_0 ^1   (dt/(t^2  +(√2)t +1))  +(√2)∫_0 ^1   (dt/(t^2 −(√2)t +1))}  =((√2)/8){ ln(2+(√2))−ln(2−(√2))} +(1/4){ ∫_0 ^1   (dt/(t^2  +(√2)t +1)) +∫_0 ^1   (dt/(t^2  −(√2)t +1))} but  ∫_0 ^1    (dt/(t^2  +(√2)t +1)) = ∫_0 ^1   (dt/(t^2  +2 ((√2)/2)t +(1/2)+(1/2))) =∫_0 ^1   (dt/((t+(1/( (√2))))^2  +(1/2)))  =_(t +(1/( (√2)))=(u/( (√2))))    ∫_1 ^(1+(√2))      (du/( (√2)(1/2)(1+u^2 ))) =(√2) ∫_1 ^(1+(√2))  (du/u) =(√2){arctan((√2)+1)−(π/4)}  ∫_0 ^1    (dt/(t^2 −(√2)t +1)) = ∫_0 ^1    (dt/((t−(1/( (√2))))^2  +(1/2))) =_(t−(1/( (√2)))=(u/( (√2))))     ∫_(−1) ^((√2)−1)    (du/( (√2)(1/2)(1+u^2 )))  =(√2){arctan((√2)−1) +(π/4)} ⇒  ∫_0 ^1   (dt/(t^4  +1)) =((√2)/8)ln(((2+(√2))/(2−(√2)))) +((√2)/4){ arctan((√2)+1) +arctan((√2)−1)} but  arctan((√2)−1) =arctan( (1/( (√2)+1)))=(π/2) −arctan((√2)+1) ⇒  ∫_0 ^1   (dt/(t^4  +1)) =((√2)/8)ln(((2+(√2))/(2−(√2)))) +((π(√2))/8) ⇒ Σ_(n=0) ^∞  (((−1)^n )/(4n+1)) =((√2)/8)ln(((2+(√2))/(2−(√2))))+((π(√2))/8) .
letS(x)=n=0(1)n4n+1x4n+1withx∣<1duetouniformconvergencewehaveddxS(x)=n=0(1)nx4n=n=0(x4)n=11+x4S(x)=0xdtt4+1+cc=S(0)=0S(x)=0xdtt4+1andn=0(1)n4n+1=S(1)=01dtt4+1letdecomposeF(t)=1t4+1F(t)=1(t2+1)22t2=1(t2+2t+1)(t22t+1)=at+bt2+2t+1+ct+dt22t+1F(t)=F(t)at+bt22t+1+bt+ct2+2t+1=F(t)c=aandd=bF(t)=at+bt2+2t+1+at+bt22t+1F(0)=1=2bb=12F(1)=12=a+b2+2+a+b2212=(22)(a+12)+(2+2)(a+12)222a+12(4)=122a=1a=122F(t)=t22+12t2+2t+1+t22+12t22t+1=122{t+2t2+2t+1+t+2t22t+1}01dtt4+1=24{01t+2t2+2t+1dt01t2t22t+1}=24{12012t+2+2t2+2t+1dt12012t22t22t+1dt}=28{[ln(t2+2t+1)]01[ln(t22t+1)]01+201dtt2+2t+1+201dtt22t+1}=28{ln(2+2)ln(22)}+14{01dtt2+2t+1+01dtt22t+1}but01dtt2+2t+1=01dtt2+222t+12+12=01dt(t+12)2+12=t+12=u211+2du212(1+u2)=211+2duu=2{arctan(2+1)π4}01dtt22t+1=01dt(t12)2+12=t12=u2121du212(1+u2)=2{arctan(21)+π4}01dtt4+1=28ln(2+222)+24{arctan(2+1)+arctan(21)}butarctan(21)=arctan(12+1)=π2arctan(2+1)01dtt4+1=28ln(2+222)+π28n=0(1)n4n+1=28ln(2+222)+π28.
Answered by Smail last updated on 26/Jan/19
(1/(1−x))=Σ_(n=0) ^∞ x^n   So (1/(1+x^4 ))=Σ_(n=0) ^∞ (−1)^n x^(4n)   let p(x)=∫_0 ^x (dt/(1+t^4 ))=Σ_(n=0) ^∞ (−1)^n ∫_0 ^x t^(4n) dt=Σ_(n=0) ^∞ (((−1)^n )/(4n+1))x^(4n+1)   p(1)=Σ_(n=0) ^∞ (((−1)^n )/(4n+1))  p(x)=∫_0 ^x (dt/(1+t^4 ))=∫_0 ^x (dt/((t^2 +(√2)t+1)(t^2 −(√2)t+1)))  (1/(1+t^4 ))=((at+b)/(t^2 +(√2)t+1))+((ct+d)/(t^2 −(√2)t+1))  a=−c=((√2)/4)  ;  d=b=(1/2)  p(x)=((√2)/4)∫_0 ^x (((t+(√2))/(t^2 +(√2)t+1))−((t−(√2))/(t^2 −(√2)t+1)))dt  p(1)=((√2)/2)∫_0 ^1 (((t+(√2))/(((√2)t+1)^2 +1))−((t−(√2))/(((√2)t−1)^2 +1)))dt  u=(√2)t+1 ⇒du=(√2)dt  y=(√2)t−1⇒dy=(√2)dt  p(1)=((√2)/4)(∫_1 ^((√2)+1) ((u+1)/(u^2 +1))dy−∫_(−1) ^((√2)−1) ((y−1)/(y^2 +1))dy)  =((√2)/4)([(1/2)ln(u^2 +1)+tan^(−1) (u)]_1 ^((√2)+1) −[(1/2)ln(y^2 +1)−tan^(−1) (y)]_(−1) ^((√2)−1) )  =((√2)/4)((1/4)ln2+(1/2)ln((√2)+1)+tan^(−1) ((√2)+1)−(π/4)−((1/4)ln(2)+(1/2)ln((√2)−1)−tan^(−1) ((√2)−1)−(π/4)))  =((√2)/4)(ln((√2)+1)+tan^(−1) ((√2)+1)+tan^(−1) ((√2)−1))  =((√2)/4)(ln((√2)+1)+((3π)/8)+(π/8))  Σ_(n=0) ^∞ (((−1)^n )/(4n+1))=p(1)=((√2)/4)(ln((√2)+1)+(π/2))
11x=n=0xnSo11+x4=n=0(1)nx4nletp(x)=0xdt1+t4=n=0(1)n0xt4ndt=n=0(1)n4n+1x4n+1p(1)=n=0(1)n4n+1p(x)=0xdt1+t4=0xdt(t2+2t+1)(t22t+1)11+t4=at+bt2+2t+1+ct+dt22t+1a=c=24;d=b=12p(x)=240x(t+2t2+2t+1t2t22t+1)dtp(1)=2201(t+2(2t+1)2+1t2(2t1)2+1)dtu=2t+1du=2dty=2t1dy=2dtp(1)=24(12+1u+1u2+1dy121y1y2+1dy)=24([12ln(u2+1)+tan1(u)]12+1[12ln(y2+1)tan1(y)]121)=24(14ln2+12ln(2+1)+tan1(2+1)π4(14ln(2)+12ln(21)tan1(21)π4))=24(ln(2+1)+tan1(2+1)+tan1(21))=24(ln(2+1)+3π8+π8)n=0(1)n4n+1=p(1)=24(ln(2+1)+π2)
Commented by maxmathsup by imad last updated on 26/Jan/19
thank you sir .
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *