calculate-n-0-1-n-4n-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 32025 by abdo imad last updated on 18/Mar/18 calculate∑n=0∞(−1)n4n+1. Commented by abdo imad last updated on 20/Mar/18 letputS=∑n=0∞(−1)n4n+1andS(x)=∑n=0∞(−1)nx4n+14n+1theradiusofS(x)isr=1andfor∣x∣⩽1S′(x)=∑n=0∞(−1)nx4n=∑n=0∞(−x4)n=11+x4⇒S(x)=∫0xdt1+t4+λbutλ=S(0)=0⇒S(x)=∫0xdt1+t4letdecomposef(t)=11+t4f(t)=1(1+t2)2−2t2=1(t2+1−2t)(t2+1+2t)=at+b(t2−2t+1)+ct+dt2+2t+1′f(−t)=f(t)⇒−at+bt2+2t+1+−ct+dt2−2t+1=f(t)⇒c=−aandb=d⇒f(t)=at+bt2−2t+1+−at+bt2+2t+1f(0)=1=2b⇒b=12f(1)=12=a+b2−2+b−a2+2⇔(2+2)(a+b)+(2−2)(b−a)=1⇒2a+2b+2a+2b+2b−2a−2b+2a=1⇒22a+4b=1⇒22a+2=1⇒22a=−1⇒a=−122.f(t)=−122t+12t2−2t+1+122t+12t2+2t+1f(t)=122−t+2t2−2t+1+122t+2t2+2t+1∫0xdt1+t4=122∫0x−t+2t2−2t+1dt+122∫0xt+2t2+2t+1dt∫0x−t+2t2−2t+1dt=−12∫0x2t−22t2−2t+1dt=−12∫0x2t−2t2−2t+1+22∫0xdtt2−2t+1∫0x2t−2t2−2t+1dt=[ln(t2−2t+1)]0x=ln(x2−2x+1)∫0xdtt2−2t+1=∫0xdtt2−222t+12+32=∫0xdt(t−22)2+34=t−22=32u∫−2323(x−22)134(1+u2)32du=4332∫232x−23du1+u2=233(arctan(2x−23)−arctan(23))∫0xt+2t2+2t+1dt=12∫0x2t+22t2+2t+1dt=12∫0x2t+2t2+2t+1dt+22∫0xdtt2+2t+1but∫0x2t+2t2+2t+1dt=[ln(t2+2t+1)]0x=ln(x2+2x+1)∫0xdtt2+2t+1=233(arctan(2x+23)−arctan(23))22∫0xdt1+t4=−12ln(x2−2x+1)+63(arctan(2x−23)−arctan(23))+12ln(x2+2x+1)+63(arctan(2x+23)−arctan(23)) Commented by abdo imad last updated on 20/Mar/18 becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: what-the-best-math-s-app-for-android-and-pc-Next Next post: 1-u-x-x-x-y-2-u-x-y-x-y- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.