Menu Close

calculate-n-0-1-n-4n-1-




Question Number 32025 by abdo imad last updated on 18/Mar/18
calculate Σ_(n=0) ^∞   (((−1)^n )/(4n+1)) .
calculaten=0(1)n4n+1.
Commented by abdo imad last updated on 20/Mar/18
let put S=Σ_(n=0) ^∞  (((−1)^n )/(4n+1)) and S(x)= Σ_(n=0) ^∞ (−1)^n   (x^(4n+1) /(4n+1))  the radius of S(x)is r=1  and for ∣x∣ ≤1  S^′ (x)=Σ_(n=0) ^∞  (−1)^n x^(4n)  =Σ_(n=0) ^∞  (−x^4 )^n  = (1/(1+x^4 )) ⇒  S(x)= ∫_0 ^x    (dt/(1+t^4 )) +λ   but λ=S(0)=0 ⇒S(x)=∫_0 ^x    (dt/(1+t^4 ))  let decompose f(t) = (1/(1+t^4 ))  f(t)=  (1/((1+t^2 )^2  −2t^2 )) =  (1/((t^2 +1 −(√2) t)(t^2  +1 +(√2) t)))  = ((at +b)/((t^2  −(√2) t +1))) + ((ct+d)/(t^2  +(√2) t +1)) ′ f(−t)=f(t) ⇒  ((−at +b)/(t^2  +(√2) t +1)) + ((−ct+d)/(t^2  −(√2)t +1)) =f(t) ⇒c=−a and b=d ⇒  f(t)= ((at+b)/(t^2  −(√2)t +1)) +((−at +b)/(t^2  +(√2)t +1))  f(0)=1= 2b ⇒ b=(1/2)  f(1) =(1/2) = ((a+b)/(2−(√2))) + ((b−a)/(2+(√2))) ⇔(2+(√2))(a+b)+(2−(√2))(b−a)=1  ⇒2a +2b +(√2) a +(√2) b +2b −2a −(√2)b +(√2) a=1 ⇒  2(√2) a +4b =1 ⇒2(√2) a +2=1 ⇒2(√2) a =−1 ⇒a= ((−1)/(2(√(2 )))) .  f(t)=  ((((−1)/(2(√2)))t +(1/2))/(t^2  −(√2)t +1))  + (((1/(2(√2)))t +(1/2))/(t^2  +(√2) t +1))  f(t) = (1/(2(√2)))  ((−t+(√2))/(t^2  −(√2) t +1)) +(1/(2(√2))) ((t+(√2))/(t^2  +(√2) t +1))  ∫_0 ^x   (dt/(1+t^4 )) =(1/(2(√2))) ∫_0 ^x    ((−t +(√2))/(t^2  −(√2) t +1)) dt +(1/(2(√2))) ∫_0 ^x    ((t+(√2))/(t^2  +(√2) t +1))dt  ∫_0 ^(x )    ((−t +(√2))/(t^2  −(√2) t+1)) dt=− (1/2) ∫_0 ^x  ((2t −2(√2))/(t^2  −(√2) t +1)) dt  =−(1/2) ∫_0 ^x     ((2t−(√2))/(t^2  −(√2) t +1)) +((√2)/2) ∫_0 ^x       (dt/(t^2  −(√2) t +1))  ∫_0 ^x    ((2t−(√2))/(t^2  −(√2) t+1))dt =[ln(t^2  −(√2) t+1)]_0 ^x   =ln(x^2  −(√2) x +1)  ∫_0 ^x      (dt/(t^2  −(√2) t+1)) = ∫_0 ^x     (dt/(t^2  −2((√2)/2) t +(1/2) +(3/2)))  = ∫_0 ^x        (dt/((t −((√2)/2))^2  +(3/4))) =_(t−((√2)/2)= ((√3)/2) u)    ∫_(−((√2)/( (√3)))) ^((2/( (√3)))(x−((√2)/2)))    (1/((3/4)(1+u^2 ))) ((√3)/2)du  =(4/3) ((√3)/2) ∫_((√2)/( (√3))) ^( ((2x−(√2))/( (√3))))    (du/(1+u^2 )) =((2(√3))/3) (arctan(((2x−(√2))/( (√3))))−arctan(((√2)/( (√3)))))    ∫_0 ^x    ((t+(√2))/(t^2  +(√2) t +1)) dt= (1/2) ∫_0 ^(x )   ((2t +2(√2))/(t^2  +(√2) t +1)) dt  = (1/2) ∫_0 ^x   ((2t +(√2))/(t^2  +(√2) t+1)) dt +((√2)/2) ∫_0 ^x    (dt/(t^2  +(√2) t +1)) but  ∫_0 ^x     ((2t +(√2))/(t^2  +(√2) t+1)) dt =[ln(t^2  +(√2) t+1)]_0 ^x  =ln(x^2  +(√2) x +1)  ∫_0 ^x      (dt/(t^2  +(√2) t+1)) =((2(√3))/3)(arctan(((2x+(√2))/( (√3))))−arctan(((√2)/( (√3)))))  2(√2) ∫_0 ^x    (dt/(1+t^4 )) =−(1/2)ln(x^2  −(√2) x+1) + ((√6)/3)(arctan(((2x−(√2))/( (√3))))−arctan(((√2)/( (√3)))))  +(1/2)ln(x^2  +(√2) x+1) +((√6)/3)(arctan(((2x+(√2))/( (√3))))−arctan(((√2)/( (√3)))))
letputS=n=0(1)n4n+1andS(x)=n=0(1)nx4n+14n+1theradiusofS(x)isr=1andforx1S(x)=n=0(1)nx4n=n=0(x4)n=11+x4S(x)=0xdt1+t4+λbutλ=S(0)=0S(x)=0xdt1+t4letdecomposef(t)=11+t4f(t)=1(1+t2)22t2=1(t2+12t)(t2+1+2t)=at+b(t22t+1)+ct+dt2+2t+1f(t)=f(t)at+bt2+2t+1+ct+dt22t+1=f(t)c=aandb=df(t)=at+bt22t+1+at+bt2+2t+1f(0)=1=2bb=12f(1)=12=a+b22+ba2+2(2+2)(a+b)+(22)(ba)=12a+2b+2a+2b+2b2a2b+2a=122a+4b=122a+2=122a=1a=122.f(t)=122t+12t22t+1+122t+12t2+2t+1f(t)=122t+2t22t+1+122t+2t2+2t+10xdt1+t4=1220xt+2t22t+1dt+1220xt+2t2+2t+1dt0xt+2t22t+1dt=120x2t22t22t+1dt=120x2t2t22t+1+220xdtt22t+10x2t2t22t+1dt=[ln(t22t+1)]0x=ln(x22x+1)0xdtt22t+1=0xdtt2222t+12+32=0xdt(t22)2+34=t22=32u2323(x22)134(1+u2)32du=4332232x23du1+u2=233(arctan(2x23)arctan(23))0xt+2t2+2t+1dt=120x2t+22t2+2t+1dt=120x2t+2t2+2t+1dt+220xdtt2+2t+1but0x2t+2t2+2t+1dt=[ln(t2+2t+1)]0x=ln(x2+2x+1)0xdtt2+2t+1=233(arctan(2x+23)arctan(23))220xdt1+t4=12ln(x22x+1)+63(arctan(2x23)arctan(23))+12ln(x2+2x+1)+63(arctan(2x+23)arctan(23))
Commented by abdo imad last updated on 20/Mar/18
be continued....
becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *