Menu Close

calculate-n-0-1-n-4n-3-




Question Number 55268 by maxmathsup by imad last updated on 20/Feb/19
calculate Σ_(n=0) ^∞     (((−1)^n )/(4n+3))
calculaten=0(1)n4n+3
Commented by maxmathsup by imad last updated on 21/Feb/19
let S(x)=Σ_(n=0) ^∞  (((−1)^n )/(4n+3))x^(4n+3)       with ∣x∣<1  we have  (dS/dx)(x) =Σ_(n=0) ^∞ (−1)^n  x^(4n +2)  =x^2  Σ_(n=0) ^∞ (−x^4 )^n  =(x^2 /(1+x^4 )) ⇒  S(x)=∫_0 ^x   (t^2 /(1+t^4 ))dt +c   but c =S(0)=0 ⇒S(x) =∫_0 ^x  (t^2 /(t^4  +1)) dt  and  Σ_(n=0) ^∞   (((−1)^n )/(4n+3)) =lim_(x→1) S(x) =∫_0 ^1   (t^2 /(1+t^4 ))dt =I   we have ∫_0 ^∞   (t^2 /(t^4  +1))dt =∫_0 ^1   (t^2 /(t^4  +1)) dt +∫_1 ^(+∞)   (t^2 /(t^4  +1)) dt and   ∫_1 ^(+∞)   (t^2 /(t^4  +1))dt =_(t=(1/u))    −∫_0 ^1      (1/(u^2 ((1/u^4 ) +1))) ((−du)/u^2 ) =∫_0 ^1    (du/(1+u^4 )) ⇒  2 ∫_0 ^1   (t^2 /(t^4  +1))dt =∫_0 ^∞    (t^2 /(t^4  +1))dt ⇒∫_0 ^1  (t^2 /(t^4  +1))dt =(1/2) ∫_0 ^∞   (t^2 /(t^4  +1))dt changement   t =α^(1/4)   give  ∫_0 ^∞   (t^2 /(t^4  +1))dt =∫_0 ^∞    (α^(1/2) /(1+α)) (1/4) α^((1/4)−1)  dα =(1/4)∫_0 ^∞   (α^((3/4)−1) /(1+α)) dα  =(1/4) (π/(sin(((3π)/4)))) =(π/(4sin((π/4)))) =(π/(4((√2)/2))) =(π/(2(√2))) ⇒∫_0 ^1   (t^2 /(t^4  +1)) dt =(π/(4(√2))) ⇒  Σ_(n=0) ^∞   (((−1)^n )/(4n+3)) =(π/(4(√2))) .
letS(x)=n=0(1)n4n+3x4n+3withx∣<1wehavedSdx(x)=n=0(1)nx4n+2=x2n=0(x4)n=x21+x4S(x)=0xt21+t4dt+cbutc=S(0)=0S(x)=0xt2t4+1dtandn=0(1)n4n+3=limx1S(x)=01t21+t4dt=Iwehave0t2t4+1dt=01t2t4+1dt+1+t2t4+1dtand1+t2t4+1dt=t=1u011u2(1u4+1)duu2=01du1+u4201t2t4+1dt=0t2t4+1dt01t2t4+1dt=120t2t4+1dtchangementt=α14give0t2t4+1dt=0α121+α14α141dα=140α3411+αdα=14πsin(3π4)=π4sin(π4)=π422=π2201t2t4+1dt=π42n=0(1)n4n+3=π42.

Leave a Reply

Your email address will not be published. Required fields are marked *