Menu Close

calculate-n-0-1-n-n-1-2-




Question Number 42401 by abdo.msup.com last updated on 24/Aug/18
calculate Σ_(n=0) ^∞   (((−1)^n )/((n+1)^2 ))
calculaten=0(1)n(n+1)2
Commented by maxmathsup by imad last updated on 25/Aug/18
let S =Σ_(n=0) ^∞   (((−1)^n )/((n+1)^2 )) ⇒S = Σ_(n=1) ^∞   (((−1)^(n−1) )/n^2 ) =Σ_(p=1) ^∞   ((−1)/((2p)^2 )) +Σ_(p=0) ^∞   (1/((2p+1)^2 ))  =−(1/4) Σ_(p=1) ^∞  (1/p^2 ) +Σ_(p=0) ^∞   (1/((2p+1)^2 )) but  Σ_(p=1) ^∞  (1/p^2 ) =(π^2 /6)  Σ_(p=1) ^∞  (1/p^2 ) =Σ_(p=1) ^∞   (1/((2p)^2 )) +Σ_(p=0) ^∞  (1/((2p+1)^2 )) ⇒Σ_(p=0) ^∞  (1/((2p+1)^2 )) =(3/4) (π^2 /6) =(π^2 /8) ⇒  S =−(π^2 /(24)) +(π^2 /8) =((3π^2 −π^2 )/(24)) = (π^2 /(12))  S  =(π^2 /(12)) .
letS=n=0(1)n(n+1)2S=n=1(1)n1n2=p=11(2p)2+p=01(2p+1)2=14p=11p2+p=01(2p+1)2butp=11p2=π26p=11p2=p=11(2p)2+p=01(2p+1)2p=01(2p+1)2=34π26=π28S=π224+π28=3π2π224=π212S=π212.

Leave a Reply

Your email address will not be published. Required fields are marked *