Menu Close

calculate-n-0-2n-3-n-1-2-n-2-2-




Question Number 32997 by abdo imad last updated on 09/Apr/18
calculate Σ_(n=0) ^∞    ((2n+3)/((n+1)^2 (n+2)^2 ))
calculaten=02n+3(n+1)2(n+2)2
Commented by abdo imad last updated on 10/Apr/18
let find a and b /  F(n)=  ((2n+3)/((n+1)^2 (n+2^ )^2 )) = (a/((n+1)^2 )) +(b/((n+2)^2 ))  we have lim_(n→+∞) (n+1)^2  F(n)=0 =a +b ⇒b=−a  F(0) =(3/4)=a +(b/4) ⇒ 3 =4a+b =a+b +3a=3a ⇒a=1  and b=−1 ⇒((2n+3)/((n+1)^2 (n+2)^2 )) = (1/((n+1)^2 )) −(1/((n+2)^2 ))  let put S_N  =Σ_(n=0) ^N   ((2n+3)/((n+1)^2 (n+2)^2 ))  and  S =Σ_(n=0) ^∞     ((2n+3)/((n+1)^2 (n+2)^2 )) we have S=lim_(N→∞) S_N   but S_N =Σ_(n=0) ^N  ( (1/((n+1)^2 )) −(1/((n+2)^2 )))=Σ_(n=0) ^N (u_n − u_(n+1) )  with u_n = (1/((n+1)^2 )) ⇒ S_N  =u_0  −u_1  +u_1 −u_2  +...u_n −u_(n+1)   =u_0  −u_(n+1) = 1− (1/((n+2)^2 )) ⇒ lim_(n→+∞)  S_N =1  ⇒ S =1 .
letfindaandb/F(n)=2n+3(n+1)2(n+2)2=a(n+1)2+b(n+2)2wehavelimn+(n+1)2F(n)=0=a+bb=aF(0)=34=a+b43=4a+b=a+b+3a=3aa=1andb=12n+3(n+1)2(n+2)2=1(n+1)21(n+2)2letputSN=n=0N2n+3(n+1)2(n+2)2andS=n=02n+3(n+1)2(n+2)2wehaveS=limNSNbutSN=n=0N(1(n+1)21(n+2)2)=n=0N(unun+1)withun=1(n+1)2SN=u0u1+u1u2+unun+1=u0un+1=11(n+2)2limn+SN=1S=1.

Leave a Reply

Your email address will not be published. Required fields are marked *